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According to the conventional view, recessions improve resource allocation by driving

out less productive firms. This paper posits an additional scarring effect: recessions

impede the developments of potentially superior firms by destroying them during their

infancy. A model is developed to capture both the cleansing and the scarring effects.

A key ingredient of the model is that idiosyncratic productivity is not directly

observable, but can be learned over time. When calibrated with statistics on entry,

exit and productivity differentials, the model suggests that the scarring effect dominates

the cleansing effect, and gives rise to lower average productivity during recessions.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

How do recessions affect resource allocation? Economists have long studied this question. Schumpeter (1934) advanced
the concept of cleansing: recessions eliminate outdated techniques and obsolescent products, and thus free resources for
more productive uses. This idea has been revived during the last decade in an assortment of theoretical work such as
Caballero and Hammour (1994, 1996), Hall (2000), and Mortensen and Pissarides (1994). In recent years, however,
researchers have begun to explore alternative ways in which recessions might influence allocation. Barlevy (2002, 2003)
posits adverse effects caused by credit-market frictions or on-the-job search that offset some or all of the cleansing effect.
Related empirical investigations suggest that recessions affect allocation through numerous channels, some with
characteristics consistent with cleansing and others consistent with negative effects of the alternatives.1

Three existing empirical findings have pointed to an unexplored channel through which recessions can affect allocation.
First, although businesses’ deaths do surge during recessions, the failing ones are not always the least productive. For
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example, Baden-Fuller (1989) examines British recessions during the 1980s and finds that many closing firms were more
profitable than the surviving ones. Second, most of the businesses fail at a very young age. According to Dunne et al. (1989),
over 75 percent of the exiting plants in the U.S. manufacturing sector aged five years or less (Table 1, p. 676). Third and most
importantly, recessions disproportionately affect businesses in their early years of operation. This is shown in Fig. 1, which
plots the quarterly exit rate of the U.S. manufacturing plants across three age categories. Apparently, infant plants suffer the
most during recessions. For example, in the second quarter of 1984, the exit rate jumped from 1:35% to 3:42% for plants
aged one year or less, and from 0:78% to 0:87% for plants aged between one and nine years; but, for plants aged 10 years or
more, it rose from 0:35% to 0:37% only.

The disproportionate deaths among infant businesses, this paper argues, should play an important role in determining
the allocative effect of economic downturns. Infant businesses tend to appear unproductive in the short run, but have the
potential to reveal high productivity in the future. Recessions that destroy infant businesses scar the economy, by
preventing new and innovative businesses from reaching their full potential. This scarring effect offsets the conventional
cleansing effect, although both effects take place through the exit of unprofitable firms. Accordingly, the overall impact of
recessions on resource allocation depends upon the relative magnitudes of these two competing effects—cleansing and
scarring.

To understand the scarring effect, consider the life cycle of a firm. A firm usually starts without fully knowing its own
quality. Uncertainty may come from the unobserved talent of the manager, unknown appeal for the product, or
unpredictable profitability of a retail location. As the firm operates, realized revenue signals its true quality: high revenue
indicates that it is productive and encourages continuing in operation; low revenue implies otherwise. The longer a firm
operates, the more it learns about its true quality. Therefore, potentially good firms—those that do not yet know they are
good—must be relatively young. During recessions, profitability declines in general so that a firm cannot bear to learn as
long as during good times. A potentially good firm that would have survived during good times, might thus exit during
recessions before it learns. At the industry level, the exit of potentially good firms reduces the proportion of good firms at
present times, as well as in the future because fewer potentially good firms are left to learn. The reduced proportion of good
firms lowers average productivity, which is defined in this paper as a scarring effect.

The above story reflects the spirit of learning, theoretically proposed by Jovonavoic (1982) and empirically promoted by
Caves (1998) and Foster et al. (2008) as a powerful tool to understand firm turnover. In this paper, a simplified learning
mechanism from Pries (2004) is combined with the vintage framework of Caballero and Hammour (1994) to capture
cleansing and scarring theoretically. The model decomposes firm productivity into two components—vintage and
unobservable idiosyncratic productivity—so that an industry’s average productivity is determined by the distribution of
firms across both dimensions. The idiosyncratic productivity is not directly observable, but can be learned over time.
Demand variations serve as the source of economic fluctuations. Lower demand reduces profitability in general, so that
firms exit younger. Younger exit ages direct, on the one hand, resources to younger and more productive vintages, causing a
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Fig. 1. Quarterly plant exit rates in the U.S. manufacturing sector (1972–1988). Dotted line represents the exit rate for plants aged ten years or older;

dashed line represents the exit rate of plants aged between one and ten years; solid line represents that for plants younger than a year. All exit rates are

employment-weighted. Data source: gross job flows data compiled by Davis et al. (1996).
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cleansing effect that raises average productivity; on the other hand, they truncate the learning process that lead resources
toward firms with higher idiosyncratic productivity, creating a scarring effect that pulls down average productivity. Hence,
recessions cause two competing effects—cleansing and scarring. The question then becomes, which effect dominates?

The paper turns to data to evaluate the scarring effect quantitatively. The model is calibrated to statistics on entry, exit,
and cohort productivity differentials observed in the U.S. manufacturing sector. When applied to stochastic demand shocks,
the calibrated model suggests that the scarring effect dominates the cleansing effect and generates lower average
productivity during recessions.

The rest of the paper is organized as follows. Section 2 lays out the model. The cleansing and scarring effects are
motivated in Section 3 with comparative static exercises. Section 4 applies the model to stochastic demand shocks,
confirms that the cleansing and scarring effects carry over, and studies their quantitative implications. Section 5 concludes.

2. A renovating industry with learning

Consider an industry where labor and capital combine in fixed proportions to produce a homogenous output. Firms that
enter in different periods coexist, each characterized by two components: vintage and idiosyncratic productivity.

A firm’s vintage is given by an exogenous technological progress that drives the industry’s leading technology to grow at
a constant rate g40. With At as the leading technology in period t, Atþ1 ¼ Atð1þ gÞ. Firms that enter in period t adopt At .
Only entrants have access to new technology; incumbents cannot retool. With firm age defined as the number of periods
that a firm has survived through, the vintage of a firm of age a in period t equals Atð1þ gÞ�a.

At entry, each firm is endowed with idiosyncratic productivity y. This idiosyncratic productivity can be the talent of the
manager as in Lucas (1978) or, alternatively, the location of the store, the organizational structure of the production process
or its fitness to the embodied technology. The key assumption regarding y is that its value, although fixed at the time of
entry, is not directly observable.

A firm hires one worker. The period-t output of a firm of age a and with idiosyncratic productivity y is

qtða;yÞ ¼ Atð1þ gÞ�axt , (1)

where xt ¼ yþ et . xt captures the influence of y on output masked by an independent transitory shock et . With the wage
rate normalized as one and the output price denoted as Pt , this firm’s period-t profit is

ptða;yÞ ¼ PtAtð1þ gÞ�a
ðyþ etÞ � 1. (2)

Both qtða; yÞ and ptða; yÞ are directly observable. A firm knows its vintage and can infer the value of xt by observing output
or revenue. Given knowledge of the distribution of et , a firm uses the value of xt to learn about y.

2.1. ‘‘All-or-nothing’’ learning

Firms attempt to resolve the uncertainty about y to decide whether to continue or terminate production. Following Pries
(2004), we model an ‘‘all-or-nothing’’ learning process, assuming only two values of y: yg for a good firm and yb for a bad
firm. Moreover, et is distributed uniformly on ½�o;o�, so that a good firm will have xt each period as a random draw from a
uniform distribution over ½yg �o; yg þo�, and a bad firm will have it drawn over ½yb �o; yb þw�. yg , yb and o satisfy
0oyb �ooyg �ooyb þooyg þo.

Therefore, an observation of xt within ðyb þo; yg þo� indicates a firm has good idiosyncratic productivity; conversely,
an observation of xt within ½yb �o; yg �oÞ tells that it has bad idiosyncratic productivity. However, an xt within
½yg �o; yb þo� reveals nothing, because the probabilities of falling in this range as a good firm and as a bad firm both equal
to ð2oþ yb � ygÞ=2o.

This all-or-nothing learning process simplifies the model considerably, as it gives only three values for ye (the expected y).
Correspondingly, there are three groups of firms in the industry: good firms with ye

¼ yg , bad firms with ye
¼ yb, and

‘‘unsure firms’’ with ye
¼ yu, the prior mean of y. The probability of true idiosyncratic productivity being revealed every

period is p � ðyg � ybÞ=2o. The unconditional probability of y ¼ yg is exogenous and equals j. A firm enters the market
as unsure; thereafter, every period it stays unsure with probability 1� p; learns it is good with probability pj, and learns it
is bad with probability pð1�jÞ. Therefore, the evolution of ye from the time of entry is a Markov process with values
ðyg ; yu; ybÞ, an initial probability distribution ð0;1;0Þ, a transition matrix

1 0 0

pj 1� p pð1�jÞ
0 0 1

0
B@

1
CA, (3)

and a limiting probability distribution as a goes to1, ðj;0;1�jÞ. If firms were to live forever, eventually all uncertainty
would be resolved, as enough information would be provided to reveal each firm’s true idiosyncratic productivity.

Suppose that each entering cohort consists of a continuum of firms, so that the law of large numbers applies. Then j and
p are not only probabilities, but also the fractions of firms with y ¼ yg in a entering cohort and of firms each period that
learn their true idiosyncratic productivity. Ignoring firm exit for now, the fractions of good firms, of unsure firms, and of bad
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Fig. 2. Dynamics of a birth cohort with all-or-nothing learning: the distance between the bottom curve and the bottom axis measures the density of firms

with ye
¼ yg; the distance between the top curve and the top axis measures the density of firms with ye

¼ yb; the distance between the two curves

measures the density of firms with ye
¼ yu . This figure is generated assuming a prior fraction of good firms of 0:5 and a learning pace of 0:02.
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firms in a cohort of age a are

ðj�jð1� pÞa; ð1� pÞa; ð1�jÞ � ð1�jÞð1� pÞaÞ. (4)

Fig. 2 plots the evolution of firm distribution within a birth cohort under all-or-nothing learning. The horizontal axis
depicts the age of a cohort across time. Apparently, the fractions of firms that know their true idiosyncratic productivity,
whether good or bad, grow as a cohort ages. Moreover, the two learning curves that denote the dynamics of factions of good
firms and bad firms are both concave. This is the decreasing property of marginal learning captured by Jovonavoic (1982):
the marginal learning effect decreases as a firm ages, which, in this model, is reflected as the decline in the marginal
number of learners as a cohort ages. The convenient feature of all-or-nothing learning is that, on the one hand, the firm-
level learning occurs suddenly, which allows for a easy track of the cross-section firm distribution, while, on the other hand,
cohort-level learning takes place gradually as in a more standard learning process.

However, there is more that Fig. 2 can tell. Let the horizontal axis to depict the cross-sectional distribution of firm ages
at any instant, then Fig. 2 captures the firm distribution across ages and idiosyncratic productivity in an industry that
features constant entry but no exit. In this industry, cohorts continuously enter in the same size and experience the same
dynamics as they age, so that, at any one time, different life stages of different birth cohorts overlap, giving rise to the firm
distribution in Fig. 2. Under this interpretation, Fig. 2 indicates that older cohorts contain fewer unsure firms, as they have
lived longer and learned more.
2.2. The recursive competitive equilibrium

Within each period, the sequence of events occurs as follows. First, entry and exit take place after firms observe the
aggregate state of the industry. Second, each surviving firm pays a fixed operating cost to produce. Third, the output price is
realized. Fourth, firms observe revenue and update their beliefs. Then, another period begins.

With this setup, this subsection considers a recursive competitive equilibrium definition, which includes as a key element
the law of motion of the aggregate state of the industry. The aggregate state is ðF;DÞ. F denotes the firm distribution across
vintages and idiosyncratic productivity. In F, the element that measures the number of firms of age a and with belief ye is
f ðye; aÞ. D is an observable exogenous demand parameter. The law of motion for D is exogenous, described by D’s transition
matrix. The law of motion for F is endogenous and denoted as H : F 0 ¼ HðF;DÞ. The sequence of events implies that
H captures the influence of entry, exit and learning on firm distribution.

Three assumptions characterize this industry equilibrium: firm rationality, free entry, and competitive pricing.
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2.2.1. Firm rationality

Firms are forward-looking price takers and profit maximizers. They predict current and future profitability to make
decisions on entry or exit. The relevant state variables for a firm are its vintage, its belief about its true idiosyncratic
productivity, and the aggregate state ðF;DÞ. Let Vðye; a; F;DÞ to be the expected value, for a firm of age a and with belief ye, of
staying in operation for one more period and optimizing afterward when aggregate state is ðF;DÞ. Then V satisfies

Vðye; a; F;DÞ ¼ E½pðye; aÞjF;D� þ bE½maxð0;Vðye0; aþ 1; F 0;D0ÞÞjF;D�, (5)

subject to F 0 ¼ HðF;DÞ, the law of motion for D, and the law of motion for ye driven by all-or-nothing learning. Since firms
enter as unsure, the expected value of entry is Vðyu;0; F;DÞ. According to the firm rationality condition, entry occurs only
when Vðyu;0; F;DÞ40; a firm of age a and with belief ye exits if and only if Vðye; a; F;DÞo0.2

2.2.2. Free entry

Under the free entry condition, new firms can enter at any instant as long as they bear an entry cost c. This entry cost can
be the cost of establishing a particular location, purchasing capital stock, or finding a qualified manager. Let f ðyu;0; F;DÞ to
be the size of an entering cohort with aggregate state ðF;DÞ. The entry cost is assumed to be a linear function of the entry
size:

c ¼ c0 þ c1f ðyu;0; F;DÞ; c040 and c140. (6)

c140 suggests that the entry cost increases in the entry size. This can arise from a limited amount of land available for
production sites or, alternatively, an upward-sloping supply curve for the industry’s capital stock. Goolsbee (1998) provides
supporting evidence for this assumption, showing that higher investment demand raises the equipment prices. Goolsbee’s
finding suggests that, as more firms enter, capital price rises with capital demand, so that entry becomes more costly.

Therefore, new firms keep entering as long as the expected value of entry exceeds the cost of entry. At the same time, the
entry cost keeps rising until reaching Vðyu;0; F;DÞ. At this point, entry stops, and

Vðyu;0; F;DÞ ¼ c0 þ c1f ðyu;0; F;DÞ. (7)

2.2.3. Competitive pricing

The output price is determined by

PðF;DÞ ¼
D

Q ðF;DÞ
, (8)

where Q is total industry output; it equals the sum of production over heterogeneous firms. Recall that, according to the
sequence of events, production takes place after entry and exit. Let F 0 to be the updated firm distribution after entry and
exit, and f ðye; aÞ0 to be the element of F 0 that measures the number of firms of age a and with belief ye.3 Applying (1) gives

Q ðF;DÞ ¼ Q ðF 0Þ ¼
X

a

X
ye

Að1þ gÞ�ayef ðye; aÞ0, (9)

where D is an exogenous demand parameter that captures the influence of demand fluctuations on an industry’s
production profitability. In reality, such demand variations can arise from changes in consumers’ taste on an industry’s
production goods or, alternatively, productivity shocks of a down-stream industry that demands this industry’s output
as one of its inputs. In this model, D equals industry total revenue, and it is the exogenous fluctuations in D that introduce
cycles to the industry. Higher D implies higher P, which encourages entry while reduces exit, so that Q rises. Conversely,
lower D causes less entry but more exit, and Q falls.

With the conditions of firm rationality, free entry, and competitive pricing, the following definition is established:

Definition. A recursive competitive equilibrium is a law of motion H, a value function V , and a pricing function P such that
(i) V solves the firm’s optimization; (ii) P satisfies (8); and (iii) H is generated by the decision rules suggested by V and the
appropriate summing-up of entry, exit and learning.

An additional assumption is made to simplify the model:

Assumption. Given values for other parameters, the value of yb is so low that Vðyb; a; F;DÞ remains negative for any a and
any ðF;DÞ.
2 Caballero and Hammour (1994) assume myopic exit behavior—a firm exits as long as its current profit drops below zero—by modeling a

deterministic and smooth demand sequence, under which the exit behavior of a forward-looking firm is similar to that of a myopic firm. In contrast,

demand follows a two-state Markov process in our model so that firm exit decisions must be forward-looking. The forward-looking exit behavior

incorporates the value of waiting. When demand is low, a firm may choose to stay even if its current profit has dropped below zero, as it realizes a

probability of future demand recovery.
3 Q is contributed by the expected output Að1þ gÞ�aye instead of the realized output Að1þ gÞ�a

ðyþ eÞ. This is because, with a continuum of firms in

each birth cohort, the law of large numbers applies, so that the production noises � and the expectation errors cancel out and the sum of realized output

equals the sum of expected output.
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Under this assumption, bad firms always exit. Thus, at any one time, there are only two types of firms in
operation—unsure and good.

3. Cleansing and scarring

Section 2 shows that the firm distribution F enters the model as a state variable, which makes it difficult to characterize
the industrial dynamics in response to stochastic demand shocks. However, it is generally true that, if shocks are
sufficiently persistent, the effects of temporary changes in response to transitory shocks are similar to those induced by
permanent shocks. Therefore, this section uses comparative static exercises on the steady-state equilibrium to motivate the
cleansing and scarring effects. The next section will turn to a numerical analysis of the model to confirm that the two
effects carry over with stochastic demand shocks.

3.1. Steady state

A steady state is a recursive competitive equilibrium with time-invariant aggregate states. In a steady state, D is and is
perceived as time-invariant, D0 ¼ D; F is also time-invariant, F ¼ HðF;DÞ. Because H is generated by entry, exit, and learning,
a steady state must feature time-invariant entry and exit for F ¼ HðF;DÞ to hold. Thus, a steady state can be summarized by
ff ð0Þ; ag ; aug: f ð0Þ is the time-invariant entry size; ag is the maximum age for good firms; and au is the maximum age for
unsure firms. Proposition 1 establishes the existence of a unique steady-state equilibrium for any D.

Proposition 1. With constant D, there exists a unique time-invariant ff ð0Þ; ag ; aug that satisfies the conditions of firm rationality,
free entry and competitive pricing.

Detailed proof is provided in Appendix A. A key step of the proof is to combine the exit condition for unsure firms and
that for good firms to get

yu

yg
þ

pjb
1þ g� b

� �
ð1þ gÞag�au ¼ 1þ

pjb
1� b

�
pjbg

ð1� bÞð1þ g� bÞ
bag�au . (10)

The proof for Proposition 1 shows that, with yg4yu, (10) determines a unique value for ag � au. Note that D does not enter
(10), so that demand has no impact on ag � au. With ag � au determined by (10) independently, au in the free entry
condition and the competitive pricing condition can be replaced by ag � ðag � auÞ. As a result, those two conditions jointly
determine the values for f ð0Þ and ag .

Fig. 3 illustrates the steady-state firm distribution. Like Fig. 2, it can be interpreted in two ways. First, let the horizontal
axis to depict the cohort age across time, then Fig. 3 displays the steady-state life-cycle dynamics of a representative cohort.
A cohort enters as unsure in a measure of f ð0Þ. As it ages, bad firms exit and the cohort size declines; good firms stay and
the density of good firms grows. At age au, all unsure firms exit with their vintage too old to survive as unsure, but good
age0

Exit Margin
Of Unsure

Exit Margin
Of Good

Learning Margin−−−−
Exit of Bad

Entry Margin 

unsure firms 

good firms 

Fig. 3. The steady-state firm distribution and the entry and exit margins.
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firms can stay. After au, learning stops, the cohort contains good firms only, and its size remains constant. Good firms live
until ag . The vintage after ag is too old even for good firms to survive.

Second, let the horizontal axis in Fig. 3 to depict the cohort age cross section. Then Fig. 3 displays the steady-state firm
distribution across ages and idiosyncratic productivity at any one time. Firms of different ages coexist. Because older
cohorts have lived longer and learned more, their sizes are smaller and their densities of good firms are higher. Cohorts
older than au are of the same size and contain good firms only. No cohort is older than ag .

Also note that, despite its time-invariant structure, the industry experiences continuous entry and exit at the steady
state. From a pure accounting point of view, there are three margins for resources to flow in this industry: the entry margin,
the exit margins of good firms and unsure firms, and the learning margin. At the entry margin, new vintages enter; at the
exit margins, old vintages leave. This introduces a force of creative destruction that replaces old vintages with new
vintages. At the learning margin, bad firms leave. This gives rise to a learning force that keeps good firms and drives out bad
firms. Because of creative destruction, average productivity grows at the technological pace g. Because of learning, the
proportion of good firms is higher among older cohorts. The two forces—learning and creative destruction—together drive
entry, exit, and the related productivity dynamics.

3.2. Comparative statics: cleansing and scarring

This subsection establishes that, across steady states, the model delivers the conventional cleansing effect, and an
additional scarring effect. The two effects are formalized in Propositions 2 and 3.

Proposition 2. In a steady-state equilibrium, the exit age for firms with a given ye is weakly increasing in demand.

Detailed proof is provided in Appendix A. Proposition 2 suggests that firms with any belief live longer in a high-demand
steady state. Put intuitively, lower demand reduces price, so that some firms that are viable when demand is high become
not viable when demand is low.

If this story carries over when D fluctuates stochastically, then the model delivers the conventional cleansing effect, in
which average firm age falls so that the average vintage becomes younger and more productive. However, once learning is
allowed, the firm distribution across the other dimension—idiosyncratic productivity—must be considered. With only two
values for true idiosyncratic productivity, good and bad, this distribution can be summarized as the fraction good firms. The
next proposition establishes how demand affects this ratio.

Proposition 3. In a steady state equilibrium, the fraction of good firms is weakly increasing in demand.

Detailed proof is presented in Appendix A. The steady-state industry fraction of good firms including both known and yet
unknown, denoted as lg , can be shown as

lg ¼ 1�
ð1�jÞ

pjðau þ 1Þ

1� ð1� pÞauþ1
þ ð1�jÞ þ pjðag � auÞ

. (11)

There are only two endogenous variables in (11): au and ðag � auÞ. Since ðag � auÞ is independent of D according to (10),
dðlgÞ=dðDÞ ¼ ðdðlgÞ=dðauÞÞ dðauÞ=dðDÞ. Appendix A shows that dðlgÞ=dðauÞX0, which, together with dðauÞ=dðDÞX0 established
by Proposition 2, implies dðlgÞ=dðDÞX0. Put intuitively, demand affects the fraction of good firms (dðlgÞ=dðDÞ) through its
impact on the exit age for unsure firms (dðauÞ=dðDÞ). To understand this result further, consider Fig. 4.

Fig. 4 displays the firm distribution across vintages and idiosyncratic productivity at a high-demand steady state and
that at a low-demand steady state. Because the entry size scales the sizes of all age cohorts at a steady state, in Fig. 4 the
entry sizes of both steady states are normalized as one. Fig. 4 shows that, corresponding to a lower demand, the two exit
margins shift to the left, creating a cleansing effect that clears out oldest vintages. However, the leftward shift of the unsure
exit margin also reduces the number of older good firms. The latter effect, shown as the shaded area in Fig. 4, is the scarring
effect of recessions.

The scarring effect stems from learning. New entrants begin unsure of their idiosyncratic productivity, although a
proportion j are truly good. Firms learn their true idiosyncratic productivity over time. If firms could live forever, then all
the potentially good firms would eventually realize their true idiosyncratic productivity. However, a finite life span of
unsure firms implies that, if potentially good firms do not learn before au, they exit at au and thus forever lose the chance to
learn. Therefore, au represents not only unsure firms’ exit age, but also the number of learning opportunities available in a
firm’s life time. A lower au gives potentially good firms less time to learn, so that the number of good firms in operation
after age au is reduced.

Hence, the industry suffers from uncertainty: firms that exit at age au include some that remain unsure but are
potentially good. The number of potentially good firms that exit at au depends on the size of the exit margin for unsure
firms, which, in turn, is determined by au. Lower demand truncates learning by reducing au. Consequently, more potentially
good firms exit at au, fewer good firms become old, and the proportion of good firms for the entire industry declines.

To summarize from Propositions 2 and 3, a low-demand steady state features a better average vintage, yet a lower
proportion of good firms. If these results carry over with stochastic demand shocks, then recessions will have both a
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conventional cleansing effect that raises average vintage, and a scarring effect that lowers average idiosyncratic
productivity. As suggested by dðlgÞ=dðDÞ ¼ ðdðlgÞ=dðauÞÞ dðauÞ=dðDÞ, the two effects are directly related to each other: it is the
cleansing effect (dðauÞ=dðDÞ) that truncates learning and prevents more potentially good firms from realizing their true
idiosyncratic productivity, which causes the industry fraction of good firms to decline (dðlgÞ=dðauÞ).

When moving beyond steady states and allowing for stochastic demand shocks, the intuition behind ‘‘cleansing and
scarring’’ still carries over. Again, consider Fig. 4. When demand drops, the exit margins shift to the left, so that the
cleansing effect takes place immediately. The scarring effect, however, occurs both instantaneously and gradually. At the
onset of a recession, the fraction of good firms drops immediately, due to the shift of the exit margin for good firms that
clear out oldest cohorts that contain good firms only—this is an ‘‘instantaneous scarring’’ effect. As the recession persists,
another ‘‘lasting scarring’’ effect will follow. Note that, at the onset of a recession, the group of firms already in the shaded
area in Fig. 4 would choose to stay, knowing their true idiosyncratic productivity to be good. These old good firms leave
gradually as the recession persists, as there vintages grow more and more unproductive compared to other firms in
operation. This creates a lasting scarring effect: the reduced au allows fewer potentially good firms to survive past au, so
that the shaded area would eventually be left blank. In summary, the arrival of a recession ‘‘scars’’ the industry, and the
‘‘scar’’ deepens as the recession persists. Instantaneous and lasting scarring effects together capture the impact of
recessions on the industry composition of idiosyncratic productivity.

3.3. Sensitivity analysis

Three modeling assumptions should be discussed to examine the robustness of the scarring effect.

3.3.1. Entry cost and entry size

One of the key assumptions in the model is that entry cost increases in entry size: c140. Will the scarring effect
carry over if entry cost is independent of entry size? If c1 ¼ 0, then the conditions of firm rationality, free entry, and
competitive pricing that jointly determine ff ð0Þ; ag ; aug will become fully recursive: ag � au is given by (10) independently;
with au ¼ ag � ðag � auÞ, the free entry condition determines ag; then the competitive pricing condition, where D enters,
determines f ð0Þ. Therefore, D impacts f ð0Þ only when c1 ¼ 0. A detailed proof is presented in Appendix A. This extreme case
is described as ‘‘full insulation’’ in Caballero and Hammour (1994): when c1 ¼ 0, fast entry is costless, so that the entry size
adjusts proportionally to changes in demand and the exit margins remain unchanged. Therefore, with c1 ¼ 0, demand
variations are entirely reflected as entry fluctuations, the exit margins do not respond. Consequently, there would be
neither cleansing nor scarring effects.

On the contrary, when c140, f ð0Þ and ag are jointly determined by the free entry condition and the competitive pricing
condition, so that some of the demand variations are accommodated at the entry margin, while the rest are taken as the
shifts of the exit margins. Therefore, entry and exit both fluctuate over the cycle. Apparently, data are consistent with the
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case when c140. For example, the business employment dynamics (BED) data show that the quarterly plant entry rate and
exit rate display very similar volatility in the U.S. economy from 1992 to 2007: the ratio of the standard deviation of the
entry rate over that of the exit rate equals 1:00 for the manufacturing sector, and 1:02 for the entire private sector.4

3.3.2. Productivity composition of entrants

In the model, the proportion of good firms among entrants is exogenous and independent of demand. But it is likely for
demand to affect entrants’ average productivity. This is modeled by Pries and Rogerson (2005), who allow for inspection of
unobservable firm quality prior to entry in addition to learning after entry. In that case, recessions raise the entry threshold
for expected idiosyncratic productivity, so that only more promising firms enter. This would drive up the average
idiosyncratic productivity among entrants during recessions, which plays against the scarring effect.

However, it is hard to tell whether recessions would in fact lower or raise entrants’ average productivity. During
recessions, while firms do need to feel more optimistic about themselves to enter, it also becomes cheaper to rent land and
easier to find a qualified manager. Thus, it is possible that recessions actually lower the productivity threshold for firms to
enter, which would complement the scarring effect by reducing entrants’ average productivity. This is shown by Davis et al.
(1996), who find that jobs created during recessions tend to be short-lived, and by Bowlus (1995), who estimates that jobs
created during recessions are usually from lower part of the wage distribution. Further evidence is provided by Jensen et al.
(2001), who document that the average productivity among the U.S. manufacturing entrants dropped during the 1982
recessions (Table 1, p. 327).

3.3.3. More complicated learning

Under the all-or-nothing learning in the model, the noises are distributed uniformly, and the expected idiosyncratic
productivity, ye, takes on only two values: yu and yg . This has greatly simplified the analysis so that the scarring effect can
be motivated analytically. However, one must consider whether the scarring effect will carry over to more complicated
learning. Suppose that the noises covering the true idiosyncratic productivity is distributed normally with mean zero
and variance s: o�Nð0;sÞ, so that every period a good firm receives a draw from Nðyg ;sÞ and a bad firm receives a draw
from Nðyb;sÞ. In that case, ye can take on any value between yb and yg , because almost every x changes the perceived
likelihood of a firm being actually good or bad. Accordingly, a firm’s ye in period t depends on the entire sequence of x’s it
received before t. Examining the scarring effect thus would require keeping track of the distribution of the x sequences, and
would not be feasible analytically.

This subsection takes a different approach by examining the scarring effect from another angle. In a vintage world with
any type of learning, the steady-state proportion of good firms with demand D, denoted as lgðDÞ, is

lgðDÞ ¼
jþ

PaðDÞ
a¼1jaðDÞhaðDÞ

1þ
PaðDÞ

a¼1haðDÞ
. (12)

Since j is exogenous, D affects lg through three endogenous variables: a, the maximum firm age; ja, the proportion of
good firms in a cohort of age a; and ha, the size of a cohort of age a relative to the entry size. Lower demand reduces a, as
some oldest vintages become not viable, and lowers ha for any a, because more firms have exited as the cohort ages. The
impact of demand on ja, however, is negative. Lower demand drives stronger selection, and thus raises ja for any
incumbent cohort.5 Therefore, D causes two competing effects on lg through its impact on a, ha, and ja: on the one hand,
increases in ja raise lg; on the other hand, declines in a and in ha reduce lg by giving incumbent cohorts with higher
proportion of good firms less weight in determining lg .

Does the scarring effect motivated under the all-or-nothing learning capture all these three channels? The a channel is
fully incorporated: as shown in Fig. 4, firms’s maximum life span becomes shorter at a low-demand steady state. However,
the ha channel and the ja channel are captured only partially. Again, consider Fig. 4: at a low-demand steady state with all-
or-nothing learning, ha is smaller only for cohorts that contain good firms only, and ja is higher only for cohorts that
possess good firms only when demand is low but some unsure firms when demand is high. By contrast, with more
complicated learning, demand impacts ha and ja for any age cohorts. Now the question becomes: with more complicated
learning, would the scarring effect disappear due to increases in ja for more cohorts, or strengthen because of decreases in
ha for more cohorts?

An important remark should be made. Lower demand drives out both potentially good firms and potentially bad firms. It
is the exit of potentially bad firms that causes higher ja. In that sense, increases in ja add to the conventional cleansing
effect. But, it is the exit of potentially good firms that induces lower ha: incumbent cohorts become smaller when demand
is low, because some potentially good firms that would have remained in operation if demand were high had exited due to
low demand—this is the spirit of the scarring effect.
4 Data are provided by the Bureau of Labor Statistics. The entry and exit series are seasonally adjusted but not employment-weighted. The standard

deviations are those of the de-trended variations calculated using the Hodrick–Prescott filter.
5 With normally distributed noises, ye can take on any value between yb and yg . Each age cohort would feature a cutoff value for ye such that firms of

this age and with ye below this cutoff value choose to exit. Lower demand raises this cutoff ye value among each age cohort so that the proportion of good

firms is higher for any incumbent cohort.



ARTICLE IN PRESS

M. Ouyang / Journal of Monetary Economics 56 (2009) 184–199 193
This point can be emphasized by comparing the following three worlds: one with vintage only, one with learning only,
and the other with both vintage and learning. In the world with vintage only as modeled by Caballero and Hammour
(1994), recessions create a cleansing effect but no scarring effect. In the world with learning only, recessions bring a
cleansing effect by killing off potentially bad firms, and a scarring effect by driving out potentially good firms. In the world
with both vintage and learning, the cleansing and scarring effects both carry over, and become stronger. Lower a destroys
marginal vintages in addition to potentially bad firms, which amplifies the cleansing effect, and further reduces older
cohorts’ weight in determining lg by driving out the oldest cohorts, which strengthens the scarring effect. Therefore,
cleansing and scarring are present as long as learning takes place, with or without vintage.

In summary, the all-or-nothing learning provides a convenient framework to motivate the scarring effect analytically.
With more complicated learning, the cleansing and the scarring should carry over and become stronger. Therefore, once
again, the question becomes: cleansing and scarring, which effect dominates?

4. With stochastic demand shocks

To evaluate the cleansing and scarring effects quantitatively, this section analyzes a stochastic version of the model, in
which demand follows a two-state Markov process with values ½Dh;Dl� and a transition probability m. Accordingly, firms
expect the current demand to persist for another period with probability m, and to change with probability 1� m.

4.1. Calibration

Table 1 summarizes the calibration. With a period as a quarter, b is set to equal 0:99. The value of m is chosen as 0:95, so
that demand switches between a high level and a low level with a constant probability 0:05 per quarter. Bad firms’
idiosyncratic productivity, yb, is normalized as one. The elasticity of entry cost with respect to entry size, c1, is chosen
based on Goolsbee (1998), who estimates that a 10% increase in demand for equipment raises equipment price by 7:284%
(Table VII, p. 143). Accordingly, c1 ¼ 0:7284.

The rest of the parameters are chosen based on data from the U.S. manufacturing sector. In particular, p, j, g, and yg are
calibrated to the observed manufacturing cohort dynamics and productivity differentials. These parameters jointly
determine the strengths of learning and creative destruction. With calibrations on p, j, g, yg , and c1, changes in demand
together with the fixed component of entry cost generate responses in entry and exit, which cause cleansing and scarring.
Therefore, Dh, Dl, and c0 are calibrated to the observed fluctuations in manufacturing plant entry and exit.

4.1.1. Learning pace (p) and prior proportion of good firms (j)

Assuming that bad firms always exit, (4) implies that the survival rate of a cohort of age a equals jþ ð1�jÞð1� pÞa.
Dunne et al. (1989) provide corresponding statistics to calibrate p and j, tracking the exit dynamics of a U.S. manufacturing
cohort that entered in 1972. They find that 57:5% of this cohort had exited by 1977 and 78:2% of it had exited by 1982. This
imposes two conditions on p and j:

jþ ð1�jÞð1� pÞ19
¼ 1� 0:575; jþ ð1�jÞð1� pÞ39

¼ 1� 0:782. (13)

This gives p ¼ 0:0538 and j ¼ 0:1157.

4.1.2. Technological pace (g)

Since only entrants adopt the leading technology in the model, g is chosen to match the observed growth in entrants’
productivity. Jensen et al. (2001) estimate that, after controlling for industry and time effects, the U.S. manufacturing
Table 1
Calibration.

Parameters value

Quarterly discount factor: b 0.9900

Persistence rate of demand: m 0.9500

Prior probability of being a good firm: j 0.1157

Quarterly pace of learning: p 0.0538

Quarterly technological pace: g 0.0040

Productivity of bad firms: yb 1

Productivity of good firms: yg 1.7500

Entry cost parameter: c1 0.7284

Entry cost parameter: c0 0.1587

High demand: Dh 108.7294

Low demand: Dl 103.9819
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entrants’ productivity grow by 46:8% from 1963 to 1992 (Table 1, p. 327).6 The 46:8% increase in entrants’ productivity over
a 29-year horizon suggests a quarterly technological pace of 0:004.

4.1.3. Idiosyncratic productivity differential (yg)

With yb normalized as one, yg is calibrated to the observed cohort productivity differentials. In the model, productivity
differ across birth cohorts due to two factors: the vintage effect, by which younger cohorts have better technology, and the
learning of unobservable fixed idiosyncratic productivity, by which older cohorts possess higher proportion of good firms.
The latter is defined by Davis and Haltiwanger (1992) as ‘‘passive learning’’. In reality, however, older cohorts may have
additional productivity advantages over younger cohorts due to managers’ accumulating experiences, workers’ learning by
doing, technology retooling, and the achieving of economies of scale. These additional effects are defined by Davis and
Haltiwanger (1992) as ‘‘active learning’’. Since yg captures passive learning only, a careful calibration of yg requires
controlling for both the vintage effect and the active learning effect.

Accordingly, yg is calibrated based on Jensen et al. (2001), who estimate that, after controlling for industry effects, in
1992 the manufacturing incumbents that entered back in 1967 is 15:3% more productive than the new entrants (Table 4,
p. 331), although the 1967 vintage is 60:4% less productive than the 1992 vintage (Table 2, p. 329). This implies a
productivity differential of 75:7% in total to be explained by active learning and passive learning together. Furthermore,
Jensen et al. (2001) report that those incumbents that entered in 1967 and have survived through 1992 have grown 14:8%
more productive over the 25 years (Table 3, p. 330). This 14:8% productivity growth must be driven by active learning
because, under passive learning, plant productivity stays constant. This suggests that active learning causes a productivity
differential of 14:8% between new entrants and those incumbents of 25 years old, and leaves a productivity differential of
60:9% to be accounted for by passive learning. Applying these statistics to all-or-nothing learning gives

ðjyg þ ð1�jÞð1� pÞ100ybÞ

ðjyg þ ð1�jÞybÞðjþ ð1�jÞð1� pÞ100
Þ
¼ 1:609. (14)

Combined with calibrations on p and j, (14) suggests yg ¼ 1:75, a 75% differential between bad and good idiosyncratic
productivity.7

4.1.4. High demand (Dh), low demand (Dl), and entry cost (c0)

The values of Dh, Dl, and c0 are calibrated using the steady-state conditions. Our numerical simulations suggest that,
along any sample path with unchanging demand, the dynamics of the model eventually converge to constant entry and
exit. The firm distribution at these stable points are similar to those at the steady states, which allows for using the steady-
state conditions as approximation.

Let agh, auh and fh to represent good firms’ exit age, unsure firms’ exit age, and entry size corresponding to Dh; and let
agl, aul, and fl to be those corresponding to Dl. Applying the calibrations on p, j, g, and yg to (10) gives agh� auh ¼

agl� aul ¼ 120. This leaves agh, agl, fh, and fl to be determined.
The values of agh, agl, fh, and fl are chosen to match the BED statistics on manufacturing plant entry and exit. Fig. 5 plots,

in the top two panels, the quarterly entry and exit rates for the U.S. manufacturing sector from 1992 to 2007: the entry rate
averages 3:11%, and the exit rate averages 3:45%. Since both series display a declining trend that is not incorporated in the
model, they are de-trended using the Hodrick–Prescott filter. The de-trended variations are presented in the bottom two
panels of Fig. 5: the de-trended entry rate fluctuates from �0:29% to 0:37%, and the de-trended exit rate varies from �0:36%
to 0:34%. This puts the following restrictions on the values of agh, agl, fh, and fl.

First, their implied long-run entry rate and exit rate have to be around 3:11% and 3:45%, respectively. Second, they must
match the peak in exit rate and the trough in entry rate at the onset of a recession. That is, when a negative demand shock
hits a high-demand equilibrium, the exit rate should rise to 3:79% (3:45%þ 0:34%), and the entry rate should drop to 2:82%
(3:11%� 0:29%). Third, they must match the trough in exit rate and the peak in entry rate during recovery. Namely, when a
positive demand shock hits a low-demand equilibrium, the exit rate should drop to 3:09% (3:45%� 0:36%) and the entry
rate should rise to 3:48% (3:11%þ 0:37%).

Using a search algorithm that incorporates the related transitory dynamics, we find that these conditions are satisfied
for the following combination of parameter values: agh ¼ 165, agl ¼ 164, fh ¼ 2:6384, and fl ¼ 2:5452. Details are
presented in Appendix A. Because agh and agl also represent the expected maximum life spans corresponding to a high
demand and a low demand, their values are used to calculate the expected values of entry during expansions and during
recessions. Applying the values of entry, the entry sizes, and the calibration on c1 to (7) gives c0 ¼ 0:1587. Applying the
calibrations on agh, agh, fh, and fl to the steady-state competitive pricing condition gives Dh ¼ 108:7294 and Dl ¼ 103:9819.
6 Jensen et al. (2001) report growths in entrants’ productivity in different time periods, among which the 1663–1992 period is the longest. We take

statistics over the longest time period reported in Jensen et al. (2001) to calibrate g, considering that technological pace can vary over time.
7 This calibration is lower than that by Davis et al. (1999), who assume a high-to-low idiosyncratic productivity ratio of 2:4 based on Bertelsman and

Doms (2000) without controlling for the vintage effect or the active learning effect. However, our calibration of yg is still consistent with their calibration

because, in our model, yg is supposed to capture only the effect of passive learning as one of the many effects driving the observed productivity

differentials.
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Fig. 5. The quarterly U.S. manufacturing entry and exit rates from 1992 to 2007. The top two panels display the seasonally adjusted, non-employment-

weighted raw series; the bottom two panels present the de-trended variations using the Hodrick–Prescott filter. Data source: the business employment

dynamics provided by the Bureau of Labor Statistics.
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With demand equal to industry total revenue, this implies a revenue differential of 4:57% between expansions and
recessions in the U.S. manufacturing sector from 1992 to 2007.

4.1.5. Discussions: average firm age and manufacturing revenue differential

Two remarks should be made on the calibration. First, the calibrated maximum age of good firms equals 165 quarters.
Since the model assumes that a firm’s vintage stays constant throughout its life span, one may argue that it is hard to
believe that some firms would employ the same technology for over 40 years. In reality, new technology adoption takes
place not only by entry and exit, but also by incumbents’ retooling. The latter, although not incorporated in the model
directly, is controlled for when calibrating yg , because technology retooling is one of the factors that drive the ‘‘active
learning’’ effect on incumbents’ productivity growth. In that sense, the model focuses on the technology adoption and the
learning of idiosyncratic productivity associated specifically with entry and exit. To further check if the calibration on agh is
reasonable, we compare its implied average firm age with data. Applying agh ¼ 165 to the steady-state firm distribution
gives an average firm age of 51 quarters. This is close to the average plant age reported by Faberman (2003), who studies
the unemployment records from five states of the U.S. and finds that the sample manufacturing plants age 58 quarters on
average.

Second, the calibrations on high demand and low demand based on the observed fluctuations in manufacturing entry
and exit suggest a differential of 4:57% in total manufacturing revenue from 1992 to 2007. To check if this calibration is
plausible, we examine the 1992–2007 quarterly series of total manufacturing value of shipments at the Census Bureau, and
find that the total manufacturing value of shipments fluctuates by about 6% around the trend.8 The difference between
4:57% and 6%, although quite small, points to the possibility that our calibration underestimates the actual fluctuations in
8 The examined series are seasonally adjusted, and are de-trended using the Hodrick–Prescott filter.
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total manufacturing revenue. This difference can arise from a couple of elements missing from the model but present in
reality. For example, demand shocks serve as the only cause for industry fluctuations in the model, while technology shocks
are an additional driving force for business cycles in reality. A positive technology shock would drive further increases in
industry total revenue by raising industry output. Moreover, the wage rate is fixed at one in the model, but tends to comove
positively with demand in reality due to, for example, an up-ward slopping labor supply curve (Swanson, 2007). With
varying wage rate, output price would have to adjust by more to generate changes in the profit margin that match the
observed cyclical entry and exit; consequently, industry total revenue fluctuates by larger magnitude.
4.2. Response to a negative demand shock

With all the parameter values assigned, firm value functions are approximated to simulate the model’s responses to
stochastic demand shocks. The key computational task is to map F, the firm distribution across ages and idiosyncratic
productivity, given demand level D, into a set of value functions V ðye; a; F;DÞ. Unfortunately, F is a high-dimensional object,
and it is well known that the numerical solution of dynamic programming problems becomes increasingly difficult as the
size of the state space increases. Following Krusell and Smith (1998), our computational strategy shrinks F into a limited set
of variables and shows that these variables’ laws of motion can approximate the equilibrium behavior of firms in the
simulated time series. Details are presented in Appendix A. The value functions and decision rules approximated using
these variables enable the investigation of the model’s dynamics along any particular path of demand realizations and the
study of the model’s quantitative implications.
4.2.1. Scarring and cleansing

To assess the effect of a negative demand shock on key variables of the model, the simulation starts with a random firm
distribution, and then uses the approximated value functions and decision rules to generate the model’s response to the
following sequence of demand realizations. Demand stays at Dh until the key variables converge; then, it drops to Dl and
persists afterward.

Panel 1 of Fig. 6 illustrates the simulated dynamics of the exit and entry rates in response to a negative demand shock.
The quarter labeled 0 denotes the onset of a recession. Panel 1 shows that, when a negative demand shock hits a high-
demand long-run equilibrium, the exit rate jumps up, declines afterward, and converges to a level above its initial value
when demand was high. Put intuitively, a negative demand shock clears out some firms that would stay in operation if
demand had remained high. In contrast with the exit rate, the entry rate drops initially, recovers gradually, and converges
to a level below its initial value. Panel 1 of Fig. 6 implies that the conventional cleansing effect carries over with an
unexpected persistent negative demand shock.

According to the comparative static exercises in Section 3, recessions bring an additional scarring effect that takes place
both instantaneously and gradually by worsening the industry composition of idiosyncratic productivity. Panel 2 of Fig. 6
presents the dynamics of the fraction of good firms (lg) when a negative demand shock hits a high-demand long-run
equilibrium. At the onset of a recession, lg drops due to the ‘‘instantaneous’’ scarring effect. As the recession persists, lg
recovers temporarily, drops again later, and converges eventually to a level below its initial value when demand was high,
as suggested by the ‘‘lasting scarring’’ effect. Panel 2 of Fig. 6 implies that the scarring effect also carries over with an
unexpected persistent negative demand shock.

Interestingly, the simulated responses of the exit rate, the entry rate, and the fraction of good firms in Fig. 6 all display
certain transitory dynamics that have not been captured by the comparative static exercises. The exit rate drops after the
initial jump; the entry rate recovers after the initial drop; and the response of lg appears hump-shaped. These transitory
dynamics are driven by the following movements of the exit margins. At the onset of a recession, the exit margins over shift

to ages younger than the exit ages at the low-demand long-run equilibrium. This is because some old good firms (shown in
Fig. 4 as the shaded area) choose to stay at this point by knowing they are good. Their operation raises industry output and
lowers output price, causing the exit margins to over shift and the entry size to over drop. As the recession persists, the
over-shifted exit margins move back to their stable points quarter by quarter. As unsure firms’ exit margin moves to older
ages, more good firms are allowed to reach their potential. As good firms’ exit margin shifts to older ages, no old good firms
exit for several quarters. This gives rise to a temporary ‘‘plastic surgery’’ effect that partially erases the instantaneous scar
and drives lg to rise after its initial drop. Once the exit margins reach their stable points, old good firms and potentially good
firms start exiting. At this point, lg falls again, and converges to a lower level when the industry reaches the low-demand
long-run equilibrium.

To summarize, Panels 1 and 2 of Fig. 6 suggest that, despite some transitory dynamics, both the conventional cleansing
effect established in Proposition 2, and the scarring effect established in Proposition 3, carry over with an unexpected
persistent negative demand shock.
4.2.2. Implications for productivity

With firm-level productivity equal to Ayð1þ gÞ�a, industry average productivity is affected by two components: the
leading technology (A), and the firm distribution across vintages (a) and idiosyncratic productivity (y). Technological
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Fig. 6. Simulated responses to a negative demand shock: the horizontal axis denotes quarters, with the quarter labeled 0 as the onset of a recession. In

Panel 1, the solid line represents the dynamics of the exit rate, and the dashed line is the dynamics of the entry rate. In Panel 3, the dashed line represents

the productivity dynamics driven by the cleansing effect alone, and the solid line denotes the productivity dynamics driven by both the cleansing and

scarring effects. Panel 4 plots the distance between the two series plotted in Panel 3. See text for more details.

M. Ouyang / Journal of Monetary Economics 56 (2009) 184–199 197
progress drives A and thus average productivity to grow at rate g. Demand shocks add fluctuations around this trend by
affecting the firm distribution across a and y.

To analyze the cyclical component of the average productivity, this subsection examines the de-trended average
productivity as the average of yð1þ gÞ�a over heterogeneous firms. In evaluating this measure, recall that there are two
competing effects. On the one hand, the cleansing effect lowers the average a, driving average productivity to rise. On the
other hand, the scarring effect reduces the average y, causing average productivity to fall. To separate these two competing
effects, two indexes are created: the average of yð1þ gÞ�a over heterogenous firms, denoted as prod; and the average of
ð1þ gÞ�a over heterogenous vintages, denoted as vin. Let f ðye; aÞ to represent the number of firms of age a and with ye, prod

and vin are

prod ¼

P
f

ye

ð1þ gÞa
� �

f ðye; aÞ

P
f f ðye; aÞ

; vin ¼

P
f

1

ð1þ gÞa
� �

f ðye; aÞ

P
f f ðye; aÞ

. (15)

Apparently, prod is affected by both the cleansing and the scarring effect, while vin is driven by the cleansing effect alone.
Thus, prod� vin measures the scarring effect on average productivity.

Panel 3 of Fig. 6 traces the percentage change in prod and in vin when an unexpected persistent negative demand shock
hits a high-demand long-run equilibrium. The initial levels of prod and vin are normalized as one. Panel 3 shows that, at the
onset of a recession, vin rises to 1:0012, implying that the cleansing effect alone raises average productivity by 0:12%;
however, prod drops to 0:9995, suggesting that the cleansing effect and the instantaneous scarring effect together lowers

average productivity by 0:05%. As the recession persists, prod recovers temporarily due to the ‘‘plastic surgery’’ effect, and
declines again as the lasting scarring effect takes place. Eventually, vin converges to 1:0013, a 0:13% increase in long-run
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average productivity by the cleansing effect alone; but prod converges to 0:9994, a 0:06% decline in long-run average
productivity under both the cleansing and scarring effects.

Panel 4 of Fig. 6 presents the corresponding dynamics of the scarring effect (prod� vin) on average productivity. The
scarring effect reduces average productivity by 0:17% at the onset of a recession and by 0:19% in the long run. In summary,
Panels 3 and 4 of Fig. 6 suggest that, with plausible calibrations, the scarring effect dominates the cleansing effect and
contributes to lower average productivity during recessions.

5. Conclusion

How do recessions affect resource allocation? This paper posits that learning has important consequences for this
question. Recessions create, in addition to the conventional cleansing effect, a scarring effect by interrupting businesses’
learning of their unobservable idiosyncratic productivity. The scarring effect is evaluated quantitatively based on statistics
on entry, exit, and productivity differentials from the U.S. manufacturing sector. A plausible calibration of the model
suggests that the scarring effect dominates the cleansing effect, and gives rise to lower average productivity during
recessions.

Previous authors have also critiqued the conventional cleansing hypothesis. But the scarring effect differs from their
proposed adverse-cleansing effects in important ways. The focus of Ramey and Watson (1997) and Caballero and Hammour
(2005) is whether cyclical reallocation is socially efficient: in their models, recessions still promote more productive
allocation of resources although associated with lower welfare. The sullying effect proposed by Barlevy (2002) arises from
reduced entry rather than concentrated exit. Barlevy (2003) analyzes credit market imperfections rather than the learning
of unobservable qualities; moreover, the scarring effect impacts resource allocation both in present times and in the
future—a dynamic effect that is missing in Barlevy (2003). Nevertheless, these various adverse-cleansing effects should be
viewed as complementary effects that likely amplify each other in reality. For example, during recessions, the credit market
frictions can further tighten young businesses’ borrowing constraints, so that more potentially good businesses are driven
out before they learn; as a result, credit market frictions deepen the scarring effect.

A couple of extensions can be added to the model. Firm size can be introduced, allowing firms with better vintages or
higher expected idiosyncratic to hire more workers. This modification will generate interesting new predictions. With good
firms bigger than unsure firms, a firm would increase its employment when it learns that its idiosyncratic productivity to
be good, giving rise to an additional job creation margin driven by learning. In that case, recessions would reduce later job
creation by driving out potentially good firms at present times. This prediction is consistent with the argument by
Caballero and Hammour (2005) that recessions in the U.S. manufacturing sector are usually followed by sluggish job
creation during the recovery phase.

The model can also be extended into a general-equilibrium framework. As discussed in Section 2, the exogenous
demand shocks can be modeled as arising from consumers’ taste shocks on an industry’s production goods, or as driven by
productivity shocks of down-stream industries that demand an industry’s output as one of their inputs. Extension of this
model into a general-equilibrium framework will raise interesting new questions. For example, can taste shocks or
productivity shocks of plausible sizes generate the observed fluctuations in manufacturing plant entry and exit? Moreover,
what is the welfare loss associated with the scarring effect? Such questions are left for future research.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jmoneco.2008.
12.014.
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