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a b s t r a c t

We explore the influence of property taxes on home prices, taking advantage of a policy experiment of
property taxation in Shanghai and in Chongqing starting from January 2011. Using the approach suggested
byHsiao, Ching andWan (2012)we estimate hypothetical home prices in the absence of property taxation
for Shanghai and Chongqing using home prices in other cities and provinces. We show that the OLS
generates consistent estimators when the price series are non-stationary I(1) processes. We apply the
model to a panel of average home prices of 31 cities and provinces in China, and find the property-tax
experiment lowered the Shanghai average home price by 11%–15% but raised the Chongqing average
home prices by 10%–12%. An examination of the policy details and data on prices by home types suggests
the post-treatment price increase in Chongqing can be driven by a spillover effect from high-end to low-
end properties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

How do property taxes influence home prices? The literature
on local public finance says the effect should be strictly negative,
as long as property taxes are, at least partially, capitalized.1
Intuitively, property taxation imposes additional user costs on
a property and thus reduces its value. Under full capitalization,
differences in home prices exactly equal the present discounted
value of variations in expected property tax liabilities. To see this,
suppose a property has a finite life span of n years. Let Pt be its
market value in year t (1 ≤ t ≤ n). Ys is the inflow of property
value in year s. i is the interest rate and τ the property tax rate.
Under standard assumptions,

Pt =

n
s=t

(Ys − τPs)
(1 + i)s−t

. (1)

Apparently, Pt declines in τ .

∗ Corresponding author.
E-mail address:minouyang2011@gmail.com (M. Ouyang).

1 This was first formally developed and tested by Oates (1969). Many authors
followed including Rosen and Fullerton (1977), Rosen (1982), Palmon and Smith
(1998), and Feldman (2010).

However, testing the influence of property taxes on homeprices
involves several difficulties. Firstly, the causality can run from P to
τ . If the local government targets a fixed amount of tax revenue,
then lower tax rates can be imposed on communities with higher
home values. Secondly, Yt , i, and other factors are hard to control
for. For example, Yt is associated with the quality of local public
services, monetary policies, inflation, and public expectations
(Poterba, 1984). All these factors are hard to fully identify. The
literature has pointed out that, when property taxes are used
to finance local public services like in the US, higher tax rate is
associated with higher P by improving the quality of public goods
(Rosen and Fullerton, 1977). To avoid biases arising from these
endogeneity problems, some authors use natural experiments
derived from exogenous policy changes (for example, Rosen,
1982). Nonetheless, even if changes in τ are exogenous, it remains
challenging to fully control for Yt , for i, and for other factors.

This paper estimates the influence of property taxes on
home prices, taking advantage of a property-tax experiment
implemented in China at the end of January 2011, in two cities
only—Shanghai and Chongqing. Unlikemany other countries, there
has been no property taxes in China until then. Thus, in addition
to having an exogenous change in τ , our study offers several
advantages. Firstly, since property taxes have not been a major
source of Chinese governments’ tax revenue and are not used

0304-4076/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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to finance local public goods, it avoids a standard bias in this
literature that higher property taxes are associated with better
public goods.2 Secondly and most importantly, we can use home
prices in other cities/provinces to control for potential changes in
Yt , in i, and in other factors for Shanghai and Chongqing, instead
of identifying variations in each factor. In particular, we estimate
hypothetical home prices in the absence of property taxes in the
treatment group using home prices in the control group, compare
hypothetical prices with actual prices, to identify the treatment
effect of the property-tax experiment.

This approach, motivated by Hsiao et al. (hereafter HCW)
(2012), is different from the conventional difference-in-difference
(DID) approach. Firstly, the DID assumes there is no sample selec-
tion effect, but HCW’s method does not require this assumption.
Secondly, HCW allows for more flexibilities in the estimation. To
see this, supposeYt changes before and after the policy experiment.
The DID approach assumes the treatment and control groups share
exactly the same change in Yt aswell as bear the same influence, so
that taking differences has it removed. These canhardly apply to lo-
cal home-price variations in China. Suppose that, an expansionary
fiscal policy drives up home prices in all cities like the 2008 China
Fiscal Stimulus Plan. It is possible that home prices rise by more in
Shanghai than in Jiangsu or vice versa because, in China, local gov-
ernments’ economic powers vary so that their responses to macro
policies also vary. Failure to incorporate such regional heterogene-
ity can falsely attribute home-price changes driven by other factors
to the property-tax experiment, creating biases on the estimators.

Instead, our approach focuses on the correlation pattern
between the treatment group and control group before the policy
intervention. Hence, it allows for the impact of underlying factors
to vary by city/province. Also, our approach puts more weight
on control cities/provinces more relevant to the treatment cities,
unlike the DID approach that assigns the same weight to each
control-group member. For example, Jiangsu, as a neighborhood
province of Shanghai, gets more weight than Heilongjiang when
both serving as control provinces for Shanghai. These details
are carefully presented in an econometric model in Section 2.
The model extends from HCW (2012) without relying on a key
assumption (i.e., no need of HCW’s Assumption 6). We show
that, as long as the price series are non-stationary, the OLS
estimation generates consistent estimators for the correlation, for
hypothetical prices, and therefore for the treatment effect of the
property-tax experiment.

When applying this approach to China’s home price data,
perhaps surprisingly, we find totally opposite effects of property
taxation on home prices in Shanghai and in Chongqing. The
estimates suggest the property-tax experiment has lowered the
Shanghai average homeprice by 11%–15% but raised the Chongqing
average home price by 10%–12%. These results stay quite robust
to various estimation specifications and to stationary versus non-
stationary data. A close examination of the policy shows taxation
specifics differ for the two cities. In Chongqing property taxes are
mainly imposed on high-end properties including single family
houses, big apartments, and those much more expensive than
the city average. We propose the positive effect of property
taxes on home prices in Chongqing, opposite to that in Shanghai
and counter-intuitive according to the literature of property-tax
capitalization, is driven by a spillover effect from high-end to low-
end properties. Intuitively, people quit buying high-end homes,

2 Both Shanghai and Chongqing governments use the proper-tax revenue to
finance the construction of subsidized rental houses for the poor. Since these houses
are at the very low end of housing supply and therefore are poor substitutes for
commercial housing, this should not influence the value of commercial housing and
thus cannot bias our estimates.

turn to low-end ones to avoid future property-tax payments. This
lowers prices of high-end houses but raises those of low-end ones.
A simple examination of data on prices by home type supports our
hypothesis.

In this paper we show that the HCW (2012) approach is also
applicable to evaluate policy impact when data are non-stationary,
which should be a valuable tool for studying Macroeconomic
policies.Moreover, it provides an important suggestion for housing
policies currently under intensive discussion in China. In the past
ten years China has experienced a dramatic increase in home
prices. The magnitude has been astonishing: it is said that the
national average home price has tripled from 2005 to 2009. The
increase in home prices has dominated that in the household
income: the ratio of median housing price to median annual
disposable household income, a standard measure for housing
affordability, equals 27 in Beijing, five times of the international
average.3 Under such circumstances, this policy experiment was
implemented at the purpose of exploring property taxation as a
policy tool to lower home prices. Although this paper does not
evaluate many other impacts of property taxation on, for example,
local public services, national investment rate, and social welfare,
it does offer an important piece of advice for future property-
tax policy. That is, property taxation should be implemented
very carefully if it is for the purpose of stabilizing home prices.
In particular, we should be cautious in following Chongqing by
imposing discriminative property taxes based on home types,
because this can generate a spillover effect and cause consequences
opposite to what the government intends for.

We would like to mention that one can also use the synthetic
control method suggested by Abadie et al. (2010) to analyze the
property tax effects on housing price. However, the synthetic
control method is computationally more demanding. Also, our
experience suggests that the synthetic control method often lead
to similar estimation result as HCW (2012) method. Therefore,
we will focus on using HCW (2012) method in this paper. The
rest of the paper is organized as follows. Section 2 lays out the
econometric model. Section 3 describes the data. The estimation
results are discussed in Section 4. Section 5 explores the potential
spillover effect in Chongqing. We conclude the paper in Section 6.

2. The model

Let P1
it and P0

it denote city i’s (average) home price in period t
with and without property taxes, respectively. The property tax
policy intervention effect to city i at time t is

∆it = P1
it − P0

it . (2)

However, we do not simultaneously observe P0
it and P1

it . The
observed data are in the form

Pit = ditP1
it + (1 − dit)P0

it , (3)

where dit = 1 if the city i has the property tax (under treatment)
at time t , and dit = 0 otherwise.

Following HCW (2012) we assume that there exists a K ×1 vec-
tor of unobservable common factors ft that drives home prices of
all cities to change over time. In our application, these can be na-
tional economic growth, macro policies, borrowing opportunities,
environmental improvements, and changes in public expectations.
Apparently, in this case ft is more likely to be non-stationary, its

3 See the 8th annual demographia international housing affordability survey
published by theWendell Cox Consultancy (Cox and Pavletich, 2012). A ratio below
3.0 is considered as ‘‘affordable’’ and that above 5.1 is ‘‘severely unaffordable’’. This
ratio ranges from 2.7 to 3.1 for the US.
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components can either be a unit root process without drift, or a
unit root process with drift. We consider the case that all cities did
not have property taxes for t = 1, . . . , T1, i.e., t ≤ T1 corresponds
to pre-treatment period.

P0
it = αi + b′

ift + uit , i = 1, . . . ,N, t = 1, . . . , T1, (4)

where αi is an individual specific intercept, bi is a factor loading
vector of dimension K × 1, uit is a stationary I(0) error term. Note
bi can differ by i. We consider the usual case that K < N so that a
few common factors affect home prices of different cities.

Starting from period T1 + 1, government implements a
property-tax experiment only to one city. Without loss of
generality, we assume this is the first city,

P1
1t = α1 + b′

1ft + ∆1t + u1t , t = T1 + 1, . . . , T , (5)

where ∆1t is the treatment effects which captures the impact of
property tax on home price in city 1 after the implementation of
the new property tax.

Because for t ≥ T1 + 1, the new property tax is implemented
only to city 1, all other cities still do not have property taxes.
Therefore, for all time horizon, we have

P0
it = αi + b′

ift + uit , i = 2, . . . ,N and t = 1, . . . , T . (6)

Let Pt = (P1t , . . . , PNt)′ be anN×1 vector of Pits at time t . Since
there is no property tax intervention before T1, then for t ≤ T1 the
observed Pt takes the form

Pt = P0
t = α + Bft + ut for t = 1, . . . , T1, (7)

where α = (α1, . . . , αN)′, B is a N × K matrix with the ith row
given by b′

i , and ut = (u1, . . . , uN)′.
Since at time T1 +1, there is a new property tax imposed to city

1, hence, from time T1 + 1 on we have

P1t = P1
1t for t = T1 + 1, . . . , T . (8)

We assume that other cities are not affected by the property tax
implementation at the first city. Therefore, for all time horizon

Pit = P0
it = αi + b′

ift + uit ,

for i = 2, . . . ,N and t = 1, . . . , T . (9)

Since P0
1t is not observable for t ≥ T1 + 1, we need to estimate

the counterfactual home price P0
1t when t > T1. If T and N are

large, method of Bai and Ng (2002) can be used to identify the
number of common factor, K , and estimate ft along with B by the
maximum likelihood approach. HCW (2012) suggest an alternative
method by using P̃t = (P2t , . . . , PNt)′ in lieu of ft to predict P0

1t for
post-treatment period. The validity of HCW’s approach depends on
a condition that: there exists a N × 1 vector a = (1, −γ ′)′ =

(1, −γ2, . . . ,−γN)′ such that a′B = 0 (i.e., a ∈ N (B), the null
space ofB) and that one can consistently estimate a.4 This condition
is stated as an assumption in HCW (their Assumption 6). HCW
(2012) consider the stationary data case, their Assumption 6 is
equivalent to assuming that the conditional mean function of ut ,
conditional on P̃t , is a linear function of P̃t . In our case because ft and
Pt are I(1) variables, we do not need tomake any linear conditional
mean functional form assumption, we will prove a result similar
to Assumption 6 of HCW in Proposition 2.1 below, the proof of
Proposition 2.1 is given at the Appendix of the paper.

4 In the application of the difference-in-difference approach with equal weight
assigned to each member at the control group, it is equivalent to have a B with
identical rows so that a = (1, −γ ′)′ = (1, − 1

N−1 , . . . ,− 1
N−1 )′ satisfies a′B = 0

and removes the impact of the latent factors. Our approach offers more flexibility
by allowing rows in B to differ, so that the existence of amust be addressed.

Proposition 2.1. From Assumption 5 we that there exists a unique
solution (γ1, γ2, . . . , γN) ≡ (γ1, γ

′) that minimizes

E

(P0

1t − γ1 − γ ′P̃t)2

.

Under assumptions A1–A5 given below, we have

(i) There exists a N×1 vector of constant a such that a = (1, −γ ′) ∈

N (B), i.e., a′B = 0.
(ii) The OLS estimator γ̂1 and γ̂ based on P1t = γ1 + γ ′P̃t + ϵ1t , t =

1, . . . , T1, are consistent estimators of γ1 and γ .

Proposition 2.1 states that one can consistently estimate
(γ1, γ

′)′ by the least squared method of regressing P0
1t on (1, P̃t)

using the pre-treatment data.
Recall that Pt = (P1t , P̃ ′

t)
′, where P̃t = (P2t , . . . , PNt)′, and P0

t is
generated by

P0
t = α + Bft + ut

for i = 1, . . . ,N and t = 1, . . . , T1. If a = (1, −γ ′)′ satisfies
a′B = 0. Then we have that

a′Pt ≡ P1t − γ ′P̃t = a′α + a′ut

because a′B = 0 so that the common factors are dropped out from
the right-hand-side of the above equation. Rearranging terms we
obtain

P1t = γ1 + γ ′P̃t + ϵ1t , (10)

where γ1 = a′α and ϵ1t = a′ut = u1t − γ ′ũt with ũt =

(u2t , . . . , uNt)
′.

Because ϵ1t is I(0) and P̃t is I(1), Eq. (10) implies that P1t and
P̃t are cointegrated. However, since some or all the components
Pjt may contain drift terms, for j = 2, . . . ,N , which implies that
the dominate terms of such Pjt will be time-trend terms arising
from the non-zero drift term. These time-trend terms are perfect
collinear, which may seem to cause asymptotically collinear
problem among Pjt ’s. In fact this will not cause any problem
because even the leading time-trend components are collinear,
the zero mean random terms do not suffer collinearity problem.
Therefore, different Pjt ’s will not be collinear even asymptotically.
One can also explicitly remove each individual time-trend term
from Pjt by adding a time trend variable to the right-hand-side the
regression model, after adding a time trend regressor, one can also
de-trend the right-hand-side Pjt , for j = 2, . . . ,N , see Xiao (2001).
Or simply add a time trend variable to the right-hand-side of the
regression Eq. (21) without de-trending each Pjt . Which method
to adopt is unimportant as both methods lead to similar fits. Let
γ̂1 and γ̂ be the OLS estimates of γ1 and γ , respectively. Then
ĝ(P̃t) ≡ γ̂1 + γ̂ ′P̃t consistently estimates g(P̃t) ≡ γ1 + γ ′P̃t in the
sense that T−1

1
T1

t=1 ĝ(P̃t)−T−1
1

T1
t=1 g(P̃t) = Op(T

−1/2
1 ) = op(1).

So thatwe can consistently estimate the counterfactual homeprice
value for city 1 for the post treatment period. In practice if the
near multicollinearity is a concern, one can simply remove some
of components of P̃t to reduce the near multicollinearity problem.
Indeed for the empirical data we have, we will show usually N
equals to 3 or 4 are sufficient to generate excellent fit based on (10).

Note that the new error ϵ1t is in general correlated with P̃t
because ϵt depends on all the original error (u1t , . . . , uNt)

′. Even so
we show in the Appendix that the least squares estimators based
on (10), say (γ̂1, γ̂

′)′ has the property that γ̂
p

→ γ and that a′B =

(1, −γ ′)B = 0. The reason is that the regressor P̃t is an I(1)process,
and the error ϵ1t is an I(0) stationary process. It is well known that
in such cointegrated models, mild endogenous regressors do not
affect the consistency result of the least squares estimators.

Since the new property tax is imposed only to city 1 so that
P1t = P1

1t for t = T1 + 1, . . . , T , but this new tax on city 1 does not



Author's personal copy

4 C. Bai et al. / Journal of Econometrics 180 (2014) 1–15

affect P̃t . Hence, we have P̃t = P̃0
t for all t = 1, . . . , T . Wewill drop

the superscript 0 in P̃0
t because P̃t = P̃0

t for all t = 1, . . . , T . We
estimate (γ1, γ

′)′ based on the following linear regression model

P0
1t = γ1 + P̃ ′

tγ + ϵ1t , t = 1, . . . , T1, (11)

where γ1 is a scalar parameter, and γ = (γ2, . . . , γN)′ is a (N −

1) × 1 vector of parameter, ϵ1t is a stationary I(0) error term.
Note that in the absent of property tax, we would have

P0
1t = γ1 + P̃ ′

tγ + ϵ1t , t = T1 + 1, . . . , T . (12)

However, since there is a property tax imposed to city 1, P0
1t

is not observable for t > T1. Nevertheless, because there is no
property tax on P̃t for all t , (12) suggests that we can estimate
P0
1t by γ1 + P̃ ′

tγ , provided that we can consistently estimate the
unknown parameters γ1 and γ . We will follow this approach as
suggested by HCW. It should be clear that the factor structure only
provides a justification on the cointegrating relationship among
pt and yields the regression in Proposition 2.1, which does not
involve factor estimation. Thus our approach (or rather HCW’s
(2012) approach) is quite different from papers that not only
assume a factor structure but also estimate the factor bymaximum
likelihood or principle component methods. One major advantage
of HCW’s (2012) is that method is computationally simple, only
requires the least squares estimation techniques.

In order to establish the consistency result presented in
Proposition 2.1, below we first make some assumptions.

Assumption 1. (i) The factor follows unit root process ft = c +

ft−1 + vt , where c is a K × 1 vector of constants, vt is zero mean
I(0) process. (ii) limT→∞ T−1 T

t=1
T

s=1 E(vtv
′
s) = Ω , where Ω

is a K × K positive definite matrix.

Assumption 2. (i) Pt = α + Bft + ut , Write B =


b′
1
B̃


, where b′

1 is

the first row of B and B̃ is of dimension (N − 1) × K . Rank(B̃) = K .
(ii) ut is zero mean I(0) process satisfying Var(ut |P̃t) is bounded
from both below and above by positive constants.

Assumption 3. We re-index the time index by j = t − T1 so that
j = 1, . . . , T2 = T − T1 when t = T1 + 1, . . . , T , for the de-
trended process P̃∗

j = P̃∗

j−1 + ηj, where ηj is a weakly depen-

dent (mixing) stationary process. Define BT2(r) = T−1/2
2

[T2r]
j=1 ηj,

where r ∈ [0, 1], [a] denotes the integer part of a. Then the follow-
ing functional central limit theorem holds for the BT2(r) process:
BT2 ⇒ W as T2 → ∞, whereW (·) is a (N −1)×1 vector of Brow-
nian motion with zero mean and covariance matrix given by Σ =

limT2→∞ Var(T−1/2
2

T2
j=1 ηj), here ⇒ denotes weak convergence.

Assumption 4. When both T1 and T2 are large, where T2 = T − T1,
we have that T2/T1 = O(1) as T1 → ∞, T2 → ∞.

Assumption 5. Let zt = (1, ỹ′
t)

′. There exists a unique N × 1 β0

such that E[(y1t−z ′
tβ0)

2
] < E[(y1t−z ′

tβ)2] for allβ ≠ β0, β ∈ RN .

Assumption 1 states that the common factors follow unit root
processes with drifts. Further, the positive definite of Ω implies
that different components of ft are not cointegrated. Assumption 2,
together with Assumption 1, imply that Pt also follows unit root
processes. The B̃ matrix has rank K implies that there exists
a squared sub-matrix of B̃, say BK , such that BK is invertible.
Assumption 2 also assumes that the error ut is an I(0) process,
while Pt is an I(1) non-stationary process. Assumption 3 is satisfied
by many weakly dependent mixing processes, the conditions for
the multivariate functional central limit theorem for partial sums
of weakly dependent random vectors can be found in de Jong and

Davidson (2000). Assumption 4 allows for either T1 is much larger
than T2, or T1 and T2 have the same order of magnitude. We do not
dealwith the case that T2 ismuch larger than T1 as it is unlikely that
one wants to evaluate a policy effects with a policy implemented
in the long past, andwith relative small data available for pre-treat
period. Assumption 5 is also quite reasonable and it is also assumed
to be true in Bell and Li (2012) who develop asymptotic theories
for an average treatment effects estimator based on a factor model
as suggested in HCW (2012). Bell and Li’s study differs from ours
as they consider the stationary and trend-stationary data cases.
We will show later than Assumption 2 implies that y1t and ỹt
is cointegrated. Hence, there exists N × 1 cointegration vectors
(γ1, γ

′)′ such that y1t − γ1 − ỹ′
tγ is I(0). Assumption 5 basically

assumes that there exists a unique N × 1 cointegration vector that
minimizes E[(y1t − γ1 − ỹ′

tγ )2]. In fact, it is easy to show that,
under quite general conditions, Assumption 5 holds true for simple
cases such as N = 2, 3, 4, K = 1, 2, 3 with N − 1 ≥ K . The
proof for general N and K with N − 1 ≥ K becomes very tedious.
Therefore, we choose to make it as an assumption. Note that in
Assumption 5 we do not require that all components of β0 to be
non-zero. However, the condition that rank(B) = K implies that
there are at least K non-zero components in β0.

Recall that the property tax (treatment) effects at time t is
defined as

∆1t = P1
1t − P0

1t , t = T1 + 1, . . . , T . (13)

When t ≥ T1 + 1, we only observe P1
1t , not P0

1t . Hence, ∆1t
defined in (13) is not observable. However, using (12) and (13) we
can predict P0

1t by γ1 + P̃ ′
tγ for t = T1 +1, . . . , T . In practice γ1 and

γ are unknown, these unknown parameters can be consistently
estimated by the least squares method. Hence, we can predict P0

1t

by P̂0
1t = γ̂1 + P̃ ′

t γ̂ , where γ̂1 and γ̂ are the least squares estimates
of γ1 and γ based on the pre-treatment period data. Therefore, we
can estimate the treatment effects by

∆̂1t = P1
1t − P̂0

1t , t = T1 + 1, . . . , T , (14)

and we estimate the average treatment effect by

∆̂1 =
1
T2

T
t=T1+1

∆̂1t , (15)

where T2 = T − T1.
The asymptotic properties of ∆̂1t and ∆̂1 are given in

Propositions 2.2 and 2.3 below.

Proposition 2.2. Under Assumptions 1–5, ∆̂1t = ∆1t + ϵ1t +

Op(T
−1/2
1 ) for any t ∈ {T1 + 1, . . . , T }.

Note that in Proposition 2.2 we do not require that the treat-
ment effect ∆1t to be a stationary process. From Proposition 2.2
we can obtain

T−1
2


t=T1+1

∆̂1t = T−1
2

T
t=T1+1

∆1t + Op(T
−1/2
2 + T−1/2

1 ), (16)

where the Op(T
−1/2
2 ) comes from T−1

2
T

t=T1+1 ϵ1t because ϵ1t is a
zero mean stationary process. Eq. (16) implies that one can still
consistently estimate the sample average treatment effects even
when ∆1t is non-stationary.

However, if ∆1t is a stationary process, define ∆1 = E(∆1t),
then one can show that∆1 can be consistently estimated by ∆̂1.We
will make an additional regularity condition before establishing
the consistency of ∆̂1 for ∆1.

Assumption 6. ∆1t is a weakly dependent stationary (ergodic)
process such that T−1

2
T

t=T1+1 ∆1t
p

→ ∆1 as T2 = T − T1 → ∞.
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Proposition 2.3. Under Assumptions 1–6, we have

∆̂1
p

→ ∆1,

where ∆̂1 is defined in (15).

Up to knowwe have only considered the non-stationary pricing
data case. If one considers the annual growth rate of home price,
say pt = ln Pt − ln Pt−12 (home price annual growth rate), then it
is possible that pt is a stationary variable. Using panel data to es-
timate treatment effects with stationary variables was considered
by Hsiao et al. (2012). The estimationmethod is the same as above,
the consistency of the estimation results requires an additional as-
sumption that E(ϵit |ỹt) is a linear function in ỹt , see Assumption 6
of HCW. In the empirical applications reported in the next section,
as a robust check, we also use home price growth rate, as well as
de-trended data, to analyze the property tax effects on home price.

3. The data

To apply the model to data, we need a panel of home prices
across cities/provinces including our treatment cities, ideally at a
high frequency to obtain sufficient sample size. The National De-
velopment and ReformCommission (NDRC) of China provides such
data. It reports monthly average per-square-meter prices of all ex-
isting commercial residential properties across 27 provinces and
four municipalities nationwide. This dataset is compiled from in-
formation on all housing transactions reported to the government.

An alternative data is from the National Bureau of Statistics
(NBS) that publishesmonthly home-price indexes for 70 cities. We
prefer the NDRC data because it provides a much bigger sample
size by starting fromMarch 1998.More importantly, the NBS series
before and after January 2011 – exactly themonthwhen the policy
experiment was carried out – are not directly comparable due to
a significant change in the data compiling process. This suggests
the NBS series are not appropriate for our approach of using pre-
treatment prices to estimate post-treatment prices in the absence
of the treatment effect. However, in later section we will examine
the post-treatment series of the NBS data for a further exploration
of our findings.5

Hence, we examine the NDRC series as a panel of home price
across 31 cities/provinces, including Shanghai and Chongqing,
from March 1998 to March 2012. Proposition 2.1 states that,
when Pt ’s are I(1) variables, the OLS approach consistently
estimates the average of P0

1t using P̃t without relying on a key
assumption of HCW (2012). Accordingly, as the first step we test
for the existence of unit roots in the NDRC home price series.
Table 1 reports the Mackinnon approximated p-values from the
augmentedDickey–Fuller tests on 31 price series. Here the log-first
difference is taken as that between the present home price in log
levels and that 12 months ago, namely, the annual price growth.
The last three columns of Table 1 show that, in log first differences,
we can reject the unit-root hypothesis with or without a drift for
almost all series. In log levels, however, we cannot reject the unit-
root hypothesis for 30 out of the 31 provinces/cities when the test
specification excludes a drift or a trend; this number is 26 with a
drift, and only 11 with a time trend.

We interpret the results in Table 1 as follows: average an-
nual growths in home prices are mostly stationary; average home
prices in log levels are mostly I(1) series, although for many
provinces/cities, controlling for a time trend renders the series sta-
tionary. Based on such findings, we conduct our estimation with

5 Some NBS series begin with March 2009 while others start from January 2011.
It is based on a nation-wide sample of 10,000 newly constructed and secondary
properties compiled from reports by real estate developers.

average home prices measured in log levels, to satisfy Assump-
tions 1 and 2 and to obtain consistent estimates as suggested by
Proposition 2.1.We also experiment with including a time trend in
the regression to check for the robustness of our results.

4. Estimation of the treatment effect

We apply the data described in Section 3 to the model specified
in Section 2 to evaluate the treatment effect of property taxes. In
particular,we use the home-price data fromMarch 1998 to January
2011 to estimate:

P1t = γ1 + γ ′P̃t + γ2D2008 + γ3t + ϵ1t , (17)

P1t is home price in Shanghai or in Chongqing. P̃t are home price
in control provinces/cities. (17) is similar to (10) except for two
additional right-hand-side terms.D2008 is a post-2008 dummy that
equals one after November 2008 and equals zero otherwise; it
is supposed to capture the influence of the 2008 Fiscal Stimulus
Plan widely believed to have largely raised home prices nation-
wide.D2008 improves the fit of the estimation, although taking it off
does not change our results qualitatively or quantitatively. t is an
optional time trend; as suggested in Section 2, we experiment with
this time trend to avoid potential near multicollinearity arising
from drift terms in the I(1) processes.

4.1. A tale of two cities

Eq. (17) is estimatedbyOLS for Shanghai and for Chongqing sep-
arately. The sample size of each regression is 155. To obtain suffi-
cient degrees of freedom, we select only a few provinces/cities into
each control group by choosing those giving the best fit of the es-
timation. Table 2 reports the results. The control provinces/cities
are Jiangsu, Zhejiang, Heilongjiang, and Sichuan for Shanghai, and
Jiangsu, Zhejiang, Beijing, and Sichuan for Chongqing. Adjusted
R-squares and F-statistics are very high for both cities, implying
home prices in control provinces/cities serve as good predictors for
those in the treatment cities. The estimation results of (17) with
and without a time trend are presented in Columns 2–4 and 5–7
of Table 2, respectively. In general including a time trend does not
showmuch influence on the point estimates or the standard errors.

4.1.1. The estimated weights for control provinces
The selection of control provinces as listed in Table 2 reflects a

geographical clustering effect: for example, Jiangsu and Zhejiang
are both neighborhood provinces for Shanghai, and so is Sichuan
for Chongqing. People living in the same region can have similar
housing purchasing behaviors by sharing the same climate, culture,
income profile, and spending habits.

Table 2 reports some of the estimated coefficients to be
negative. For example, the estimated weight of Sichuan is negative
when serving as a control province for Shanghai. Note that there
is no causal implication in our regression equation as commonly
assumed. Here the coefficients are simply capturing the correlation
patterns of home prices among different provinces/cities driven
by certain common factors. Shanghai and Sichuan are located
geographically far from each other—one by the east coast and
the other in the Southwestern inland. Hence many latent factors
such as, for example, migration from inland to the coast or the
adoption of regional development policies or industrial policies
with different impacts across regions, can give rise to negative
correlations (after controlling for other factors) of home prices of
these two regions.6

6 For example, Chengdu, as the capital city of Sichuan province, has developed
a high-tech district starting from 1988, providing tax exemptions and subsidies
to high-tech companies. In recent years, many IT companies have moved their
headquarters from Shanghai to Chengdu.
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Table 1
Augmented Dickey–Fuller tests for unit roots.
Provinces/cities None Drift Trend None Drift Trend

Log levels Log-first differences
Beijing 0.8995 0.3228 0.5610 0.2400 0.0182* 0.7136
Tianjing 0.9744 0.5945 0.1042 0.0254* 0.0011* 0.0951*

Hebei 0.7239 0.1414 0.0175* 0.0000* 0.0000* 0.0000*

Liaoning 0.6557 0.1082 0.0001* 0.0012* 0.0000* 0.0110*

Shandong 0.9389 0.4222 0.0077* 0.0000* 0.0000* 0.0000*

Shanghai 0.9098 0.3442 0.2005 0.2237 0.0165* 0.7653
Jiangsu 0.9863 0.7080 0.0203* 0.0017* 0.0001* 0.0191*

Zhejiang 0.9920 0.7944 0.0621* 0.0370* 0.0017* 0.2926
Fujian 0.9844 0.6852 0.5503 0.1160 0.0068* 0.2027
Guangdong 0.9768 0.6135 0.0853* 0.0194* 0.0008* 0.1522
Hainan 0.8771 0.2840 0.0010* 0.0000* 0.0000* 0.0002*

Guangxi 0.9341 0.4068 0.0521* 0.0039* 0.0001* 0.0326*

Jilin 0.0272 0.0013* 0.0000* 0.0000* 0.0000* 0.0000*

Heilongjiang 0.9401 0.4262 0.2473 0.0050* 0.0002* 0.0071*

Anhui 0.9729 0.5834 0.0780* 0.0018* 0.0001* 0.0126*

Jiangxi 0.9325 0.4019 0.1876 0.0007* 0.0000* 0.0005*

Hubei 0.9664 0.5419 0.0443* 0.0004* 0.0000* 0.0006*

Hunan 0.9500 0.4625 0.0104* 0.0262* 0.0011* 0.1264
Chongqing 0.9952 0.8632 0.1281 0.0058* 0.0002* 0.0221*

Sichuan 0.9909 0.7756 0.2595 0.0241* 0.0010* 0.0628*

Guizhou 0.9755 0.6030 0.3341 0.0042* 0.0002* 0.0091*

Yunan 0.8957 0.3156 0.0468* 0.0050* 0.0002* 0.0161*

Henan 0.9098 0.3442 0.0033* 0.0003* 0.0000* 0.0023*

Shanxi 0.9420 0.4326 0.0117* 0.0000* 0.0000* 0.0002*

ShanXi 0.2386 0.0181* 0.0000* 0.0000* 0.0000* 0.0001*

Neimenggu 0.3513 0.0327* 0.0118* 0.0000* 0.0000* 0.0001*

Xizang 0.3931 0.0410* 0.7991 0.0172* 0.0012* 0.0302*

Gansu 0.5014 0.0599* 0.0003* 0.0025* 0.0001* 0.0313*

Qinghai 0.8949 0.3144 0.0417* 0.0048* 0.0002* 0.0203*

Ningxia 0.9646 0.5313 0.2367 0.1966 0.0138* 0.4604
Xinjiang 0.9156 0.3573 0.0073* 0.0034* 0.0001* 0.0257*

Note: This table reports the Mackinnon approximated p values of the augmented Dickey–Fuller tests on home price of 31 provinces/cities in log levels and in log-first
differences under various specifications. The log-first difference is the difference between log levels compared with the corresponding month in the previous year. Drift
indicates the test specification allows for a drift; trend implies the test includes a time trend; none means no drift or trend. All tests employ two lags, while the results are
robust to various lag lengths. The sample size of each test is 166. Shanxi and ShanXi refer to two different provinces whose names share the same pronunciations but with
different tones.

* Indicates significance at the 10% level or above and therefore a rejection of the existence of a unit root.

Table 2
Weights of control provinces/cities.

Provinces/cities Weights SD T Weights SD T

Panel A: Shanghai as the treatment city

R2
= 0.9907 R2

= 0.9910
F-stats = 5299.69 F-stats = 4145.84

Jiangsu 0.7503*** 0.0684 10.96 0.6453*** 0.0909 7.10
Zhejiang 0.2908*** 0.0668 4.35 0.2944*** 0.0650 4.53
Heilongjiang 0.1976*** 0.0551 3.59 0.1633*** 0.0565 2.89
Sichuan −0.2350*** 0.0388 −6.06 −0.2157*** 0.0385 −5.61
Post-2008 dummy 0.1682*** 0.0170 9.87 0.1753*** 0.0175 10.00
Time trend 0.0010 0.0007 1.50

Panel B: Chongqing as the treatment city

R2
= 0.9795 R2

= 0.9837
F-stats = 4135.50 F-stats = 3300.26

Jiangsu 0.3973*** 0.0688 5.77 0.7441*** 0.0834 8.92
Zhejiang 0.1806*** 0.0630 2.87 0.2044*** 0.0601 3.40
Beijing 0.1232* 0.0656 1.88 0.1071* 0.0629 1.70
Sichuan 0.1342* 0.0810 1.66 0.1195* 0.0706 1.69
Post-2008 dummy 0.0653*** 0.0129 5.05 0.0623*** 0.0132 4.73
Time trend −0.0035*** 0.0007 −4.95

Note: This table reports the estimated γ ′ together with standard errors and t-statistics on P0
1t = γ1 + γ ′P̃t + ϵ1t with an optional time trend using home price before the

policy experiment. P1t is the average home price in Shanghai in Panel A and that in Chongqing in Panel B. Column 1 lists the provinces/cities whose average home price
are included in P̃t . Columns 2–4 report the estimation results without a time trend; columns 5–7 report those with a time trend. The sample size is 155. All estimations are
conducted in log levels.

* Indicates significance at the 10% level.
*** Indicates significance at the 1% level.
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Fig. 1. Treatment effect in log levels. Note: data on actual price is from the National Development of Reform Committee (NDRC) of China; estimated price is based on data
fromMarch 1998 to January 2011. 2011m1 indicates January 2011 when the property-tax experiment is implemented. Prices are measured in log levels. The bottom panels
signify the treatment effects.

Also note that, for Chongqing, the coefficient of the time trend
is estimated as negative and statistically significant. This is because
the average home price in Chongqing displayed a clear downward
trend before 2002 (see Fig. 1). In other words, the Chongqing home
prices were declining before 2002, and started to rise continually
only after 2002. This downward trend before 2002 is also present
for some of the other provinces/cities, but appearsmuchmilder. As
amatter of the fact, taking off the data before January 2002 renders
this time-trend coefficient for Chongqing positive and statistically
significant. Nonetheless, our results remain robust to keeping this
trend, taking off this trend, or allowing this trend to differ before
and after January 2002.

4.1.2. The estimated treatment effect
Next, we construct P̂0

1t , the hypothetical home price in the
absence of property taxes, using the estimated weights reported
in Table 2, to generate estimates for the treatment effect defined
as ∆̂1t = P1

1t − P̂0
1t . The number of observations pre-treatment (T1)

is 155 and that post-treatment (T2) is 14, satisfying Assumption 4
that T1 should dominate T2. Table 3 lists P1

1t , P̂
0
1t , and ∆̂1t starting

from February 2011. Panels A and B of Table 3, respectively, report
those using weights estimated without and with a time trend.

The estimated treatment effects give an interesting tale of two
cities. Surprisingly, the property-tax experiment has had opposite
effect on the average home price in Shanghai and in Chongqing.
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Table 3
Treatment effect of property tax.

Shanghai Chongqing
Actual Hypothetical Treatment Actual Hypothetical Treatment

Panel A: with no time trend

2011:m2 9.6151 9.6464 −0.0312 8.4721 8.3608 0.1114
2011:m3 9.5985 9.6472 −0.0488 8.4546 8.3445 0.1101
2011:m4 9.5300 9.6830 −0.1530 8.4626 8.3435 0.1191
2011:m5 9.5465 9.6771 −0.1307 8.4672 8.3523 0.1148
2011:m6 9.5337 9.6682 −0.1344 8.4486 8.3543 0.0943
2011:m7 9.5537 9.6827 −0.1290 8.4517 8.3493 0.1024
2011:m8 9.5474 9.6804 −0.1330 8.4474 8.3515 0.0959
2011:m9 9.5546 9.6753 −0.1207 8.4369 8.3442 0.0927
2011:m10 9.5577 9.6725 −0.1148 8.4344 8.3453 0.0890
2011:m11 9.5699 9.6579 −0.0880 8.4273 8.3392 0.0882
2011:m12 9.5066 9.6331 −0.1265 8.4101 8.3133 0.0968
2012:m1 9.3009 9.6325 −0.3316 8.4854 8.3013 0.1841
2012:m2 9.3009 9.6325 −0.3316 8.4854 8.3013 0.1841
2012:m3 9.3824 9.6540 −0.2717 8.4379 8.3090 0.1289

Average 9.5070 9.6602 −0.1532 8.4515 8.3364 0.1151

Panel B: with a time trend

2011:m2 9.6151 9.6415 −0.0264 8.4721 8.3956 0.0765
2011:m3 9.5985 9.6439 −0.0455 8.4546 8.3693 0.0853
2011:m4 9.5300 9.6761 −0.1461 8.4626 8.3686 0.0940
2011:m5 9.5465 9.6713 −0.1248 8.4672 8.3724 0.0947
2011:m6 9.5337 9.6641 −0.1304 8.4486 8.3699 0.0787
2011:m7 9.5537 9.6787 −0.1250 8.4517 8.3645 0.0872
2011:m8 9.5474 9.6774 −0.1299 8.4474 8.3641 0.0833
2011:m9 9.5546 9.6732 −0.1186 8.4369 8.3535 0.0834
2011:m10 9.5577 9.6713 −0.1136 8.4344 8.3513 0.0831
2011:m11 9.5699 9.6587 −0.0888 8.4273 8.3386 0.0887
2011:m12 9.5066 9.6367 −0.1301 8.4101 8.3049 0.1052
2012:m1 9.3009 9.6358 −0.3349 8.4854 8.2966 0.1888
2012:m2 9.3009 9.6366 −0.3357 8.4854 8.2929 0.1925
2012:m3 9.3824 9.6563 −0.2739 8.4379 8.2917 0.1462

Average 9.5070 9.6587 −0.1517 8.4515 8.3452 0.1063

Note: This table reports the estimated treatment effect after the implementation of property-tax experiment in January 2011 (2011:m1), as the difference between the
actual price and the hypothetical price approximated using weights listed in Table 2. Panel A lists those with weights estimated with no time trend; Panel B lists those with
weights estimated with a time trend.

Table 3 shows that, starting from February 2011, the estimated
effect is strictly negative for Shanghai but positive for Chongqing.
The average treatment effect for Shanghai is −0.1532 based on
weights estimated without a time trend, and −0.1517 based on
those with a time trend; by contrast, the corresponding numbers
are 0.1151 and 0.1063 for Chongqing. Put intuitively, the property-
tax experiment has lowered the Shanghai average home price
by about 15% but raised the Chongqing average home price by
about 11%.

The opposite treatment effects for the two cities are most ap-
parent in Fig. 1, which plots P1

1t and P̂0
1t . Because the estimated co-

efficient on the time trend is statistically insignificant for Shanghai
but significant for Chongqing, the plotted P̂0

1t is constructed based
on weights estimated without a time trend for Shanghai but those
with a time trend for Chongqing. The top two panels show that,
before the treatment, P̂0

1t closely tracks P1
1t for both cities while, af-

ter the treatment, P̂0
1t goes above P1

1t for Shanghai but below P1
1t

for Chongqing. The sizable post-treatment gaps between P1
1t and

P̂0
1t are most clear in the bottom two panels that present the post-

treatment series only. According to Fig. 1, the average home price
would have been higher in Shanghai but lower in Chongqing in the
absence of property taxes.

4.2. Robustness check

We conduct three robustness checks before exploring further
explanations of the opposite treatment effects.

4.2.1. The out-of-sample forecast
The first is to check the prediction power of the control group.

One cannot say the prediction is accurate just because P̂0
1t tracks

P0
1t closely before the treatment (i.e., a good in-sample fit), because

P̂0
1t is itself generated using weights estimated by regressing P1t on

P̃t . To assess the prediction accuracy, we need to evaluate out-of-
sample forecast. We cut the data by 14months, and repeat the OLS
estimation of (17) using the truncated data. More specifically, we
re-estimate (17) using data from March 1998 to November 2009
to form predictions for home prices in Shanghai and in Chongqing
starting from December 2009. In this case, the difference between
P1t and P̂0

1t from December 2009 to January 2011 reflects the
prediction accuracy. Fig. 2 plots P1t and P̂0

1t from December 2009
to March 2012 estimated based on the truncated data: P1t and
P̂0
1t still closely track each other for the first 14 months, implying

good prediction accuracy; P1
1t goes below P̂0

1t in Shanghai but above
P̂0
1t in Chongqing starting from February 2011, suggesting opposite

treatment effects.

4.2.2. The estimation in growth rates
Secondly, we follow HCW (2012) to estimate the treatment

effects using stationary series. So far, all estimations are conducted
in log levels that are I(1) series,which, according to Proposition 2.1,
gives consistent estimators when applied to the OLS estimation.
Under the regularity conditions given in HCW (2012), using
stationary data also leads to consistent estimation of the treatment
effect. Accordingly we repeat the OLS estimation of (17) in log-



Author's personal copy

C. Bai et al. / Journal of Econometrics 180 (2014) 1–15 9

Fig. 2. Robustness check: the out-of-sample fit. Note: Estimated prices are based on data from March 1998 to November 2009. See note for Fig. 1 for other details.

Table 4
Weights from estimation in growth.

Provinces/cities Weights SD T Weights SD T

Panel A: Shanghai as the treatment city

R2
= 0.8634 R2

= 0.8332
F-stats = 158.44 F-stats = 201.01

Jiangsu 0.4594*** 0.0882 5.21 0.4486*** 0.0902 4.97
Zhejiang 0.4509*** 0.0646 6.98 0.4358*** 0.0700 6.23
Anhui 0.3385*** 0.0706 4.79 0.3207*** 0.0748 4.29
Sichuan −0.3145*** 0.0466 −6.76 −0.3111*** 0.0464 −6.70
Post-2008 dummy 0.1029*** 0.0179 5.76 0.1033*** 0.0181 5.72
Time trend 0.0000 0.0000 0.55

Panel B: Chongqing as the treatment city

R2
= 0.8001 R2

= 0.8332
F-stats = 224.60 F-stats = 201.01

Jiangsu 0.1951 0.1876 1.04 0.3136* 0.1609 1.95
Zhejiang 0.2727*** 0.0626 4.36 0.4129*** 0.0669 6.17
Guangxi 0.2187** 0.1017 2.15 0.3936*** 0.1094 3.60
Anhai 0.2851*** 0.0884 3.22 0.2830*** 0.0810 3.49
Jiangxi −0.2297*** 0.0663 −3.46 −0.1537** 0.0678 −2.27
Sichuan 0.1583** 0.0734 2.16 0.1172* 0.0667 1.76
Post-2008 dummy 0.0611*** 0.0121 5.06 0.0551*** 0.0123 4.49
Time trend −0.0001*** 0.0000 −5.47

Note: This table reports the estimated γ ′ together with standard errors and t-statistics on P0
1t = γ1 + γ ′P̃t + ϵ1t with an optional time trend measuring home price in log

first differences (growth rates). Growth is measured as annual growth, as the change in log levels compared with the corresponding month in the previous year. The sample
size is 143. All estimations are conducted in log levels.

* Indicates significance at the 10% level.
** Indicates significance at the 5% level.
*** Indicates significance at the 1% level.

first differences (growths). Here, growth is measured as annual
growth, the change in log levels compared with the corresponding
month in the previous year. Table 3 reports the results. Adjusted
R-square’s are all above 0.80, implying good fits. Controlling for
a time trend does not change the estimated coefficients by much
(see Table 4).

The estimated treatment effects in annual growths are reported
in Table 5. Corresponding P1

1t and P̂0
1t are plotted in Fig. 3.

Apparently, the log-level estimation results carry over to the
annual-growth estimation. In Table 5, the treatment effect is
negative for Shanghai but positive for Chongqing. In Fig. 3, the line

of hypothetical pricesmove above that of actual prices for Shanghai
but below that for Chongqing.

To check whether the estimated treatment effects in annual
growth are consistent with those in log levels, we convert the
estimated log-level prices into annual growths by taking log-first
differences between the present month and the corresponding
month in the previous year. Fig. 4 plots actual price growths (solid
lines), hypothetical price growths based on the annual-growth
estimation (long dashed lines), and hypothetical price growths
converted from hypothetical log-level prices based on the log-
level estimation (short-dashed lines). The long-dashed line and
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Table 5
Treatment effect in growth rate.

Shanghai Chongqing
Actual Hypothetical Treatment Actual Hypothetical Treatment

Panel A: with no time trend

2011m2 0.1076 0.2802 −0.1726 0.2767 0.2007 0.0760
2011m3 0.0862 0.2407 −0.1545 0.2840 0.1881 0.0959
2011m4 −0.0742 0.1990 −0.2732 0.2172 0.1621 0.0551
2011m5 −0.0053 0.1824 −0.1876 0.2084 0.1613 0.0471
2011m6 −0.0211 0.1821 −0.2031 0.2238 0.1633 0.0605
2011m7 −0.0031 0.2128 −0.2159 0.2307 0.1524 0.0782
2011m8 −0.0192 0.2086 −0.2278 0.2158 0.1559 0.0599
2011m9 −0.0429 0.1807 −0.2236 0.1815 0.1369 0.0446
2011m10 −0.0812 0.1612 −0.2424 0.1548 0.1203 0.0345
2011m11 −0.0532 0.1541 −0.2073 0.1356 0.1198 0.0158
2011m12 −0.0553 0.1384 −0.1936 0.1060 0.1003 0.0057
2012m1 −0.3143 0.0558 −0.3700 0.0133 −0.0075 0.0208
2012m2 −0.3143 0.0558 −0.3700 0.0133 −0.0075 0.0208
2012m3 −0.2161 0.0812 −0.2973 −0.0167 0.0157 −0.0324

Average −0.0719 0.1666 −0.2385 0.1603 0.1187 0.0416

Panel B: with a time trend

2011m2 0.1076 0.2803 −0.1727 0.2767 0.2059 0.0708
2011m3 0.0862 0.2420 −0.1559 0.2840 0.1836 0.1004
2011m4 −0.0742 0.2021 −0.2763 0.2172 0.1358 0.0814
2011m5 −0.0053 0.1859 −0.1911 0.2084 0.1314 0.0770
2011m6 −0.0211 0.1855 −0.2065 0.2238 0.1359 0.0878
2011m7 −0.0031 0.2153 −0.2185 0.2307 0.1356 0.0950
2011m8 −0.0192 0.2111 −0.2303 0.2158 0.1385 0.0773
2011m9 −0.0429 0.1840 −0.2269 0.1815 0.1111 0.0703
2011m10 −0.0812 0.1653 −0.2465 0.1548 0.0870 0.0678
2011m11 −0.0532 0.1584 −0.2115 0.1356 0.0812 0.0544
2011m12 −0.0553 0.1433 −0.1986 0.1060 0.0578 0.0482
2012m1 −0.3143 0.0647 −0.3789 0.0133 −0.0970 0.1103
2012m2 −0.3143 0.0647 −0.3789 0.0133 −0.0972 0.1104
2012m3 −0.2161 0.0886 −0.3047 −0.0167 −0.0565 0.0398

Average −0.0719 0.1708 −0.2427 0.1603 0.0824 0.0779

Note: This table reports the estimated treatment effect measuring home price in growth rates. Growth is measured as annual growth, as the change in log levels compared
with the corresponding month in the previous year. Panel A lists those with weights estimated with no time trend; Panel B lists those with weights estimated with a time
trend.

the short-dashed line follow each other for both cities, suggesting
the treatment effect is negative for Shanghai but positive for
Chongqing.

4.2.3. The exogeneity of control provinces
Lastly but not leastly, HCW (2012) approach and ours both

reply on a key assumption that the control provinces/cities are
exogenous to the treatment. This implies, in our application, ideally
the property-tax experiment should have absolutely no influence
on home prices of any control provinces. This is hard to fully
justify. Many potential factors (i.e., migration) can cause home
prices of regions other than Shanghai and Chongqing to respond.
Under this circumstance, however, it should be Shanghai and
Chongqing’s neighborhood regions that are mostly likely to be
affected. Hence, to maintain this assumption we re-conduct the
log-level estimation of (16) but excluding neighbor provinces from
each control group. In particular, Jiangsu and Zhejiang are taken
out of the control group for Shanghai; Sicuan is excluded from that
for Chongqing.

The results are reported in Table 6. Panel B shows the estimated
treatment effects remain qualitatively robust: it is negative for
Shanghai but positive for Chongqing. However, the two numbers,
−11.5% and 12.25%, are noticeably higher quantitatively than
earlier estimate of −15.17% and 10.63%. This is due to lower
estimates for hypothetical home prices when neighbor provinces
are taken out of the control group.

Why would the inclusion of neighbor provinces in the control
group cause higher estimates for hypothetical home prices in the
absence of property taxation? If ever affected by the Shanghai and

Chongqing experiment, post-treatment home prices of neighbor
provinces will mostly likely respond positively. There could be
a spillover effect from treatment cities to neighbor provinces:
to avoid future property-tax payments, Shanghai and Chongqing
home buyers switch to purchasing in neighbor regions instead,
which drives up home prices in neighbor provinces. Such higher
post-treatment prices, when employed in the control group,
would cause higher estimates for hypothetical home price of the
treatment cities because, as Table 2 shows, the correlation between
treatment cities and neighbor provinces (i.e., Zhejiang and Jiangsu
for Shanghai, and Sichuan for Chongqing) are all estimated to be
positive based on the pre-treatment data.

Nonetheless, examining the exogeneity of home prices in
neighbor provinces to the treatment requires investigating the
potential spillover effect with detailed micro data, which is
certainly beyond the scope of this paper. Most importantly, our
results stay qualitatively robust and quantitatively similar even
after excluding neighbor provinces from the control group. Thus,
we conclude the property-tax experiment has lowed the average
home price in Shanghai by 11%–15%, and have raised that in
Chongqing by 10%–12%.

5. The price spillover

Why has the property-tax experiment generated totally oppo-
site effects on home prices for the two cities? A close look at the
tax implementation details of the two cities shows that their pol-
icy specifics differ greatly, especially in the following three aspects.

Firstly, not all houses are taxable. In Shanghai the property
taxes are imposed on all newly purchased houses except for local
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Fig. 3. Treatment effect in annual growth. Note: Prices are measured in annual growth, as the differences in log levels compared with the corresponding month in the
previous year. See note for Fig. 1 for other details.

residents’ first purchases; but, in Chongqing, they are imposed
on high-end houses only – namely – single family houses (either
newly purchased or not) and those newly purchased at a price
at least twice as much as the city average. Note that, although in
both cities property taxes are levied mainly on new transactions,
in Chongqing single family houses (considered as the most high-
end property) bought in the past are also subject to property taxes.
Secondly, not the entire values of the taxable houses are actually
taxed: in Shanghai each family member can claim a tax exemption
on values associated with 60 square meters of the taxable house;
in Chongqing, values associated with the first 180 square meters
are tax-exempt for single family houses and, for other taxable
houses, it is 100 square meters. Lastly, the property-tax rate is
different: in particular, in Shanghai it is 0.6% for taxable houses at
least twice as expensive as the city average and 0.4% for others; in
Chongqing, the tax rate is 1.2% for taxable houses at least four times

as expensive as the city average, 1% for those at least three times
as expensive as the city average, and 0.5% for others;moreover, the
tax base is taken as 70% of the taxable value in Shanghai but 100%
in Chongqing.

Which of the above three aspects helps to explain our results?
Lower tax rate in Shanghai cannot help much as, theoretically
speaking, home prices cannot possibly fall under lower taxes but
rise under higher taxes. The difference in the tax object and in
the exemption value can be potential causes. With property taxes
imposed on high-end houses only, it is possible for home buyers to
turn to lower-end properties instead; similarly, people might start
buying houses smaller than the tax-exempt size at the purpose
of avoiding property-tax payments. Also, since property taxes are
imposed on new transactions except for single family houses,
potential home buyers can rush to buy low-end houses not subject
to property taxes at themoment, fearingpossible property taxation
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Fig. 4. Consistency check: the log-level estimates and the annual growth estimates. Note: This figure checks the consistency between the log-level estimates and the annual-
growth estimates. Estimated price growth is based on annual price growth data from March 1998 to January 2011. Growth is measured as the log difference between the
present month and the corresponding month in the previous year. Short-dashed line indicates the annual growth converted from the estimated prices in log levels, namely,
the difference between the estimated hypothetical prices in log level of the current month and those of the corresponding month in the previous year. 2011m1 indicates
January 2011 when the property-tax experiment is implemented. See text for more details.

Table 6
Results with neighbor provinces excluded.

Provinces/cities Shanghai Chongqing

Panel A: estimated weights of control provinces/cities

R2
= 0.9659 R2

= 0.9837
F-stats = 1549.66 F-stats = 2850.76

Weights SD T Weights SD T

Jiangsu 0.7924*** 0.0881 8.99
Zhejiang 0.2283*** 0.0632 3.61
Beijing 0.1785*** 0.0336 5.31
Heilongjiang 0.4035*** 0.0818 4.93
Sichuan 0.1063* 0.0625 1.70
Post-2008 dummy 0.0755*** 0.0127 5.95
Time trend 0.0076*** 0.0005 14.69 −0.0040*** 0.0007 −5.49

Panel B: estimated treatment effects

Month Actual Hypothetical Treatment Actual Hypothetical Treatment

2011:m2 9.6151 9.5390 0.0761 8.4721 8.3900 0.0821
2011:m3 9.5985 9.5459 0.0526 8.4546 8.3670 0.0875
2011:m4 9.5300 9.6076 −0.0775 8.4626 8.3645 0.0981
2011:m5 9.5465 9.6240 −0.0776 8.4672 8.3644 0.1027
2011:m6 9.5337 9.6250 −0.0913 8.4486 8.3583 0.0903
2011:m7 9.5537 9.6242 −0.0705 8.4517 8.3568 0.0949
2011:m8 9.5474 9.6250 −0.0776 8.4474 8.3567 0.0907
2011:m9 9.5546 9.6307 −0.0761 8.4369 8.3421 0.0948
2011:m10 9.5577 9.6353 −0.0777 8.4344 8.3391 0.0953
2011:m11 9.5699 9.6333 −0.0634 8.4273 8.3236 0.1037
2011:m12 9.5066 9.6210 −0.1143 8.4101 8.2824 0.1278
2012:m1 9.3009 9.6430 −0.3421 8.4854 8.2533 0.2321
2012:m2 9.3009 9.6506 −0.3497 8.4854 8.2493 0.2361
2012:m3 9.3824 9.7036 −0.3212 8.4379 8.2585 0.1794

Average 9.5070 9.6220 −0.1150 8.4515 8.3290 0.1225
Note: This table reports the log-level estimation results when neighbor provinces of the treatment cities are excluded from each control group. In particular, Jiangsu and
Zhejiang are taken out of the control group for Shanghai; Sichuan is taken out of that for Chongqing. Both estimations employ a time trend. The estimation for Chongqing
includes a post-2008 dummy. This dummy turns out statistically insignificant when included in the regression for Shanghai and thus is removed. The sample size is 155.
See notes to Tables 2 and 3 for more details.

* Indicates significance at the 10% level.
*** Indicates significance at the 1% level.
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Fig. 5. Price trends of three home types. Note: Price trends of three home types for Shanghai (SH) and Chongqing (CQ) starting from January 2011. Solid line indicates the
fixed-indexed price level for homes smaller than 90 squaremeters; long-dashed line indicates that for homes between 90 and 144 squaremeters; short-dashed line indicates
that of those bigger than 144 square meters. Data is from the National Bureau of Statistics (NBS) of China.

on future new purchases of such properties. All these factors can
raise the price of lower-end houses but lowers that of higher-end
ones. As long as the price increase of lower-end (or smaller) houses
dominates the price decline of higher-end (or bigger) ones, the city
average home price will rise, just as what we have identified for
Chongqing. The dominance of low-end housing price is quite likely
because it has been reported that, in Chongqing, purchases of high-
end houses accounted for only 6.8% of all housing transactions
in 2011.7 Therefore, we propose the post-treatment home-price
increase in Chongqing comes from a compositional change in
prices of various property types driven by a spillover effect from
higher end to lower end.

To explore this hypothesis, we turn to the NBS data as the
NDRC panel does not provide information on prices by home
type. Starting from January 2011, the NBS publishes city-level
price indexes for three categories of houses: those smaller than
90 square meters, of sizes between 90 and 144 square meters,
and those bigger than 144 square meters. Fig. 5 plots the price
indexes of these three categories in Shanghai and in Chongqing
starting from January 2011. Apparently, for Shanghai the three
curves are prettymuch synchronized. But, for Chongqing, the price
index for houses smaller than 90 square meters clearly divert
from the other two to a higher level. Note that higher-end houses
tend to be bigger; moreover, Chongqing houses smaller than 90
square meters are surely below the exemption size and thus free
of property taxes while, for Shanghai, houses in each of the three
categories may or may not be property-tax free, depending on the
family size. The price patterns shown in Fig. 5 point to a possibility
that, in Chongqing, homepurchasers turn to smaller houses instead
so that the price of this category rises but that of others falls. This
is consistent with our proposed explanation on the potential price
spillover effect from higher-end to lower-end properties.

Nonetheless, the price patterns in Fig. 5 do not serve as a test for
the spillover effect. A complete test would involve the estimation
of hypothetical prices of various property types in the absence of

7 See the Analysis of 2011 Chongqing Property Taxation at www.china-
consulting.cn/news/20120202/s3393.html.

property taxes using the pre-treatment data. Quantity changes in
transactions of various properties before and after the experiment
should also be examined, as the spillover effect should raise both
the price and the quantity of low-end houses. Apparently, our data
is not detailed enough to carry out such a study. However, it has
been reported that, ten months into the property-tax experiment,
the supply of apartments smaller than 100 square meters rose by
17.8% in Chongqing, accounting for over 54.2% of all housing supply
(see footnote 7 for sources). These statistics, togetherwith the price
patterns in Fig. 5, lead us to conclude that the price spillover from
high end to low end is highly likely in Chongqing. We leave the
confirmation of such spillover effect to future study with detailed
micro data.

6. Conclusion

In this paper we achieve two purposes. First, we establish the
consistency result of the HCW method for non-stationary data
under quite weak regularity conditions. HCW’s methodology is
different to the conventional difference-in-difference approach,
it works under much weaker conditions than those required by
the DID method. With non-stationary data this approach is most
applicable to policy experiment. Thus, it can be an especially useful
tool for evaluating macro policies.

Furthermore, it provides an important piece of suggestion for
the intensive discussion on property taxes currently going on in
China. That is, property taxation can be an effective policy tool
to lower home prices, but should be carried out carefully. The
case of Chongqing has presented a lesson, showing discriminative
taxation based on property types can drive up home prices instead,
possibly by causing a spillover effect from high-end to low-end
properties. This should be taken into consideration in future
property-tax design and implementation.

Future research should examine the time-series properties of
the treatment effect of property taxes, when more post-treatment
observations become available. It should also test for the spillover
effect across various property types with more detailed data, to
shed light on how property taxes influence the real estate market.
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Appendix. Proofs of Propositions 2.1–2.3

Proof of Proposition 2.1. The factor model is given by

(Pt)N×1 = (α)N×1 + (B)N×K (ft)K×1 + (ut)N×1, (18)

where Pt , ft are I(1) variables and ut is a zero mean I(0) variable.
Assumption 1 implies that the K factors ft are not cointegrated
among themselves. Belowwe show that there exists cointegration
vector a = (1, −γ ′)′ such that a′Pt is I(0), i.e., Pt is cointegrated.

Premultiply Pt by a′, we obtain

a′Pt = P1t − γ ′P̃t = a′α + a′Bft + a′ut . (19)

Wewant tominimize T−1
1

T1
t=1(P1t−γ ′P̃t)2 = T−1

1
T1

t=1(a
′α+

a′Bft + a′ut)
2. It is obvious in order to minimize the above objec-

tive function, if the null space of B is non-empty, we will choose
a ∈ B, i.e., a′B = 0. This is because ft is not cointegrated, if a′B ≠ 0,
then the a′Bft term will make the objective function explode as
T1 → ∞. Below we show that there exists a = (1, γ ′)′ ∈ RN

such that a′B = 0. Without loss of generality we assume that the
K × K square matrix BK (see Assumption 2) consists of the last K
rows of B̃. Let γK denote the last K element of γ , and put γj = 0 for
j = 2, . . . ,N − 1 − K . Then we have

a′B = (1, −γ ′)


b′

1
B̃


= (b′

1 − γ ′B̃) = b′

1 − γ ′

KBK
set
= 0. (20)

Since BK is invertible, solving for γk from (20) leads to the unique
solution of γK given by

γK = (B′

K )−1b1.

Re-arranging terms in (19) and using (20) we get

P1t = γ1 + γ ′P̃t + ϵ1t , (21)

where γ1 = a′α, ϵ1t = a′ut . Because ϵ1t is a stationary I(0)
variable, (21) implies that P1t and P̃t are cointegrated. In the above
derivation we have shown that there is at least one co-integration
vector (γ1, γ

′)′ = (1, 0′

N−1−K , γ ′

K )′, where 0m denotes a m × 1
vector of zeros. However, when N − 1 > K , it is likely that there
will bemore cointegration vectors, say withmore than K non-zero
components. Given Assumption 5, it can be shown that the OLS
estimator β̂ = (γ̂1, γ̂

′)′ will converge to β0, where β0 is defined
in Assumption 5, i.e., β0 is the unique vector of β that minimizes
E[(y1t − z ′

tβ)2], where zt = (1, ỹ′
t)

′. This completes the proof of
Proposition 2.1.

.
Proof of Proposition 2.2. When ft and Pt are unit root processes
with drifts, we can re-write the regression model

P1t = γ1 + γ ′P̃t + ϵ1t

as

P1t = γ1 + δt + γ ′P̃∗

t + ϵ1t , t = 1, . . . , T1, (22)

where δ is a constant, P̃∗
t is the de-tended process from P̃t . Then it

is well established (e.g., Hamilton, 1994) that γ̂1 −γ1 = Op(T
−1/2
1 ),

δ̂ − δ = Op(T
−3/2
1 ) and γ̂ − γ = Op(T−1

1 ), where γ̂1, δ̂ and γ̂ are
the OLS estimators of γ1, δ and γ , respectively. Then we have

∆̂1t = P1
1t − P̂0

1t

= P1
1t − P0

1t + P0
1t − P̂0

1t

= ∆1t + (γ1 − γ̂1) + (δ − δ̂)t + P̃∗
′

t (γ − γ̂ ) + ϵ1t

= ∆1t + ϵ1t + Op(T
−1/2
1 ).

We explain the above result in more details below. First, γ̂ −

γ = Op(T
−1/2
1 ). Next, since the de-tended variable P̃∗

t is a unit root
process without drifts, we know that γ̂ − γ = Op(T−1

1 ). Finally,
δ̂−δ = Op(T

−3/2
1 ). Hence, P̃∗

′

t (γ − γ̂ ) = Op(T 1/2T−1
1 ) = Op(T

−1/2
1 )

since T/T1 = O(1) and t(δ̂ − δ) = Op(TT
−3/2
1 ) = Op(T

−1/2
1 ) by

Assumption 4. Also, we assume that there are no multicollinearity
among different components of P∗

jt for j = 2, . . . ,N , because we
can always remove some of the regressors so that the remaining
regressors do not suffer (severe) multicollinearity.

Proof of Proposition 2.3. We will only prove the case that P̃t is a
unit root process (without drift) since the case with drifts can be
similarly proved.

∆̂1 =
1
T2

T
t=T1+1

[P1
1t − P̂0

1t ]

=
1
T2

T
t=T1+1

[P1
1t − P0

1t + P0
1t − P̂0

1t ]

=
1
T2

T
t=T1+1

∆1t + (γ1 − γ̂1) +
1
T2

T
t=T1+1

P̃ ′

t(γ − γ̂ )

+
1
T2

T
t=T1+1

ϵ1t

= ∆1 + Op(T
−1/2
2 ) + Op(T

−1/2
1 )

+Op(1)Op(T
1/2
2 T−1

1 ) + Op(T
−1/2
2 )

= ∆1 + Op(max{T−1/2
1 , T−1/2

2 })

because T2/T 2
1 = O(T−1

1 ), where we have also used T−3/2
2

T
t=T1+1

P̃t = T−1
2

T2
j=1[P̃j/T

1/2
2 ]

d
→

 1
0 W (r)dr = Op(1) by Assumption 3,

and γ̂ − γ = Op(T−1
1 ) because P̃t is a driftless unit root process,

and that P1t and P̃t are cointegrated.
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