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1 Introduction

People often cooperate with one another. The fact that they do has been the subject of a

great deal of study revolving around a particular puzzle: in individual instances when people

cooperate each one would seem to be better off if he didn’t. Given this, how is cooperation

sustained? Or, from an evolutionary perspective, what forces allow cooperative behavior to

survive natural selection?

How might an outside observer witnessing cooperation explain why it took place? He

might say that, despite the appearance given by the individual occurrence, each individual

was really pursuing his longer-term own self-interest. Or, he might say that each cooperator

values not only his own well-being, but also that of the others.

These two answers represent a dichotomy between two general types of explanation

for cooperative behavior, which we might call ‘circumstantial’ and ‘motivational’. The first

appeals to the presence of relevant circumstances beyond the specific instance which dictate

that a self-interested person cooperate on the particular occasion in question. The second

appeals to the idea that the cooperating individuals are motivated by something other than

their own self-interest.

In this paper, I suggest that the both of these answers could be correct, but that the

relation between the two is interdependent in a subtler way than one might imagine. While

sometimes, circumstances lead a purely self-interested person to behave cooperatively, this set

of circumstances depends on whom he is dealing with. The presence of an altruistic partner

can lead an egoist to cooperate in situations where he wouldn’t have if his partner were also

an egoist. In such situations, the outside observer would have to look closely in order to

decipher each individual’s true motivations. Upon seeing mutual cooperation, he could be

sure that at least one of the two parties was altruistic. Without a finer lens through which to

view the interaction, however, he might remain unsure whether both were altruists.

Such situations where mutual cooperation depends on the presence of at least one altruist

provide a possible explanation for how altruists and egoists could both be evolutionarily

successful. If altruists can engage in successful cooperation with whomever they encounter,

whereas egoists require an altruistic partner, the greater frequency of cooperation favors the
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altruists. However, if when egoists interact with altruists, the former does somewhat better,

then the higher payoff in particular instances of cooperation favors the egoists. This type of

situation could thus support the belief that in the long run, the population can arrive at a

mixed equilibrium consisting of both altruists and egoists.

What type of situation might lead egoists to cooperate only with altruists? The kind that I

consider in the paper is one in which two parties must first commit to a means of survival and

then rely on this particular means as a source of sustenance. So, once the survival technique

has been chosen, there is further work left to be done.

Suppose that there are two survival techniques, C and D, available for each individual

to pick. On the on hand, C is more efficient than D. On the other hand, the D allows the

individual who selects it to capture all of the output he produces, whereas C confers some

benefit on the other. Furthermore, suppose that when both choose C, they must to some extent

work collectively, so that if they both choose this technique, each retains a greater proportion

of his own output than he would if the other had chosen D.

In what follows, I show that in situations of this sort, an egoist paired with an altruist

will choose the more efficient technique, C. In contrast, when two egoists are paired together,

both will choose D.As a result of this partner-dependent choice on the part of the egoist, both

altruists and egoists are evolutionarily viable.

To show this, I offer a game-theoretic model that borrows elements from different areas

of the literature that examines why cooperative behavior might emerge in an evolutionary

setting.1 As in many models of cooperation, dynamics play a central role. In my model, the

game takes place over two stages. In the first, each player must select a technology, and in the

second, each must choose an amount of effort. Because of this structure, the model contains

the typical feature whereby egoists’ decision to cooperate now is driven by the fact that in the

future there will be common knowledge of the decision they have taken.

Unlike many models, mine contains no repeated interaction. This separates it from a vast

body of research that relies on the notion of indefinite repetition as the basis for cooperation.

As a result, the perspective I offer differs from that taken by notable authors such as Ken

Binmore, who, in a series of books (Binmore, 1994, 1998, 2005), argues that the relevant type of
1A seminal work that is a catalyst for much of this literature is Trivers (1971). See Bergstrom (2002) for an

excellent survey of subsequent developments.
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situation to study in order to understand cooperation is best represented by the indefinitely-

repeated prisoner’s dilemma. Using this framework, he develops a theory in which morality

is a product of self-interested players’ involvement in games with multiple equilibria.

The approach used in this model is similar to Binmore’s in that the players are versions

of what he terms homo economicus. In other words, their behavior is characterized by the

maximization of rational preferences, which depend on their own, and, in the case of altruists,

their partner’s ‘genetic fitness’. This latter quantity is then used as the replication dynamic

in determining the population equilibrium. Thus, this paper follows what is known in the

literature as the ‘indirect evolutionary approach’, pioneered by Güth and Yaari (1992) and

Güth (1995) and adopted, for example, by Samuelson and Swinkels (2006) and Dekel, Ely, and

Yilankaya (2007). One recent work following this approach, Alger and Weibull (2010), also

considers the interaction between altruism and effort choice. However, that paper’s focus

is quite different in that it considers the effect that the prospect of ex post transfers among

altruistic kin has on an earlier choice of effort level.

The approach I (as well as the above authors) take contrasts with many evolutionary

models whose players are what Binmore author calls homo behavioralis (Binmore, 1994, pp.

187). In models of this type, the individual agents’ strategies are predetermined by ‘nature’

and thus the true players might be thought of as genes, which ‘program’ their hosts’ behavior

and reproduce in proportion to their hosts’ payoffs.

Two models that use versions of homo behavioralis but which resemble mine in that they

use cooperation as a device leading to mixed populations are those of Frank (1987)2 and, more

recently, Choi and Bowles (2007). In the first, both ‘honest’ and ‘dishonest’ agents give off noisy

signals of their type and can thus coexist in a one-shot prisoner’s dilemma setting with payoff-

based replication. In the second, the population consists of groups of two-dimensional agents

that can be both altruistic or not and ‘parochial’ or not. After playing an intra-group public

goods game, each engages in either inter-group war or inter-group peace with another. The

authors find that both groups with many parochial altruists and groups with many tolerant

egoists tend to be prolific at steady state. A potentially appealing feature of the mechanism

presented in the current model, that differentiates it from these two is that it does not depend
2In Frank’s model, agents are not totally void of rationality, since, despite being able to play only one strategy

in the game, they exercise preferences in their choice of partners.
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on ‘group selection’, whereby altruists’ success is due to their ability to locate and pair up

with other altruists. Instead, I assume that players are matched randomly, and the paper’s

argument is robust to variations along this dimension.

The rest of the paper is organized as follows: Section 2 presents the basic model. Section 3

studies the game played by each generation of agents, and Section 4 analyzes the population

steady state. Section 4 concludes.

2 The Model

The model takes the following structure. First, a given generation of agents plays the game.

Second, they reproduce according to their equilibrium fitness. The equilibrium fitness from

the game is used to calculate the steady state proportion of each type of player, and this

is considered to be the population’s long-run equilibrium. The main result is that due to

their ability to induce egoists to cooperate, altruists – with seemingly disadvantageous utility

functions – survive alongside egoists in the game’s evolutionary process.

In a given generation, players from the population are randomly matched and then play

a two-stage game, the equilibrium outcome of which depends on the their utility functions.

These utility functions, however, need not correspond directly to the players’ reproductive

fitness. For egoists, or ‘self-regarding’ players, fitness and utility are represented by the same

function, while altruists, or ‘other-regarding’ players’ utility functions depend on their own

fitness and on that of the player with whom they are paired, which we refer to as their

‘opponent’.

In the first stage of the game, the players’ moves determine the technology for producing

fitness that will be used in the second stage. One of these technologies, C, is more efficient

than the other; however, if one player cooperates, i.e. chooses C, and the other player chooses

D, then the latter, defecting player, captures, at the margin, all of the addition fitness afforded

by the more efficient technology. If both cooperate, then the total output is split equally. In

the second stage, the technology having been determined, players choose a level of effort.

In Section 3, we show that, while two self-regarding players never cooperate with one

another, each does cooperate when paired with an other-regarding player, provided that
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the latter is altruistic enough and provided that the additional surplus generated by the

‘cooperative technology’, C, is great enough. In Section 4, we show that when such an

equilibrium exists, the population steady state may entail a relatively even mix of self and

other-regarding players.

2.1 The Players

We assume all players’ utility functions to take the form ui = fi + θi f j, where the parameter

θi reflects player i’s degree of regard for his opponent, j’s, fitness. We assume that θi is a

genetically inherited trait and is therefore, from player i’s perspective, an exogenously given

feature of his preference ordering.

We restrict attention to the case of a population that consists of two types of players. One

type, the self-regarding players, do not care about the fitness of their opponent and thus are

of the type θi = 0. The second type is other-regarding, and, in the case that we consider,

(positively) altruistic, and thus, for such players, θi = θ > 0.

2.2 The Game

The players of each generation play a two-stage game, taking one action at each stage. First,

they simultaneously select a production technology, and second, they simultaneously select a

level of effort. We assume complete information, so each player knows both his opponent’s

type when deciding which technology to use3 and the choice of technology that the other

player has made when he selects his effort level. Our solution concept is subgame perfect

equilibrium.

First, each individual selects a production technology-cooperation (C) or defection (D).

We denote this action by σ, where σ = σi × σ j ∈ {C,D} × {C,D}. Second, each player selects a

level of effort, ei. The fitness payoffs are shown in the following matrix,

3In future research, we plan to relax this assumption that, when players choose their technologies, they have
complete information of their oponent’s type. Note, however, that, unlike in various prior works, such as Frank
(1987), the argument in this paper for the adaptability of altruism does not depend on such knowledge of other
players’ types as a determinant of which players are matched with each other. Moreover, we do not assume that
altruists have a greater ability than egoists to recognize other altruists, e.g., through a ‘secret handshake’ (see
Robson (1990)).
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σ j = C σ j = D

σi = C
fi(ei, e j, σ) = 1+α

2 (
√

ei +
√e j) − ei, fi(ei, σ) =

√
ei − ei

f j(e j, ei, σ) = 1+α
2 (√e j +

√
ei) − e j f j(e j, ei, σ) =

√e j + α
√

ei − e j

σi = D
fi(ei, e j, σ) =

√
ei + α

√e j − ei fi(ei, σ) =
√

ei − ei

f j(e j, σ) =
√e j − e j f j(ei, σ) =

√
ei − ei

whereα ∈ (0, 1) is a technological parameter, which remains fixed throughout the evolutionary

process.

We note a few basic features of this fitness matrix. When player i defects, he receives all

of the output from his effort, ei, whereas when player i cooperates, his effort exerts a positive

externality on the opponent, j. When both players defect, the chance to use the more efficient

technology is sacrificed completely, giving

fi(ei, {D,D}) + f j(e j, {D,D}) =
√

ei +
√

e j − ei − e j.

From the bottom right-hand corner of the matrix, we see that in the case of DD, the distribution

is such that only a player’s own effort affects his fitness.

On the other hand, when both players cooperate, both produce using the more efficient

technology, which is, collectively,

fi(ei, e j, {C,C}) + f j(e j, ei, {C,C}) = (1 + α)(
√

ei +
√

e j) − ei − e j.

As shown in the top left-hand corner of the above matrix, when both players cooperate, the

output is split evenly between the two players.

Finally, when i cooperates and j defects, only players i’s production uses the more efficient

technology, while player j’s uses the less efficient one, yielding

fi(ei, {C,D}) + f j(e j, {D,C}) = (1 + α)
√

ei +
√

e j − ei − e j.

As we see in the matrix, the distribution of additional fitness depends crucially on the combined

stage 1 decision, σ. Supposing that the opponent, j, cooperates by choosing C, then player
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i faces a tradeoff between the use of the more efficient technology, which he can use if also

chooses C, and the ability to capture all of the technological benefits, associated with j’s effort,

that come about from j’s choice of C. We now solve for the outcome of the game.

3 Analysis of the Game

We begin by summarizing our results, which we prove in the following two sections. If

cooperation is sufficiently more efficient than defection and if other-regarding players are

sufficiently altruistic, then for both combinations of players that include at least one altruist,

the unique subgame perfect equilibrium is such that σ = {C,C}. In particular, we prove a

sufficient criterion for this to be the case:

θi >
1
2

and α >
2
√

26 − 3
19

≈ 0.38.

When egoists face each other, the unique equilibrium involves σ = {D,D}. For a large subset

of parameter values satisfying these conditions, altruists survive alongside egoists in the

population steady state.

3.1 Self-Regarding versus Self-Regarding

As a benchmark, consider, first, the case where two self-regarding players face one another.

Since for such agents, we have θi = 0, utility and fitness are equivalent, ui = fi . Using

backward induction from the above fitness matrix gives Lemma 1.

Lemma 1. When two self-interested players face each other, the game reduces to a one-stage game with

the following payoff matrix:

7



σ j = C σ j = D

σi = C
3(1 + α)2

16
,

3(1 + α)2

16
1
4
,

1 + 2α
4

σi = D
1 + 2α

4
,

1
4

1
4
,

1
4

In this reduced-form one-stage game, the strategy D weakly dominates C. In the unique equilibrium in

weakly dominant strategies, {D,D}, both players obtain a fitness level of
1
4

.4

Proof. See Appendix A.1. �

Let us briefly analyze the above one-stage game. Clearly it is part of a class of one-shot,

complete information games of the form

Cooperate Defect

Cooperate x2, x2 x1 , x3

Defect x3 , x1 x1 , x1

where x3 > x2 > x1. However, if, in this game, we were to straightforwardly give the row

player the same form of other-regarding preferences as those that we consider in our model,

we would have a game of the form

Cooperate Defect

Cooperate (1 + θi)x2, x2 x1 + θix3 , x3

Defect x3 + θix1 , x1 (1 + θi)x1 , x1

As is immediately apparent, for the column player Defect remains a weakly dominant

strategy. Since, x3 > x2, the column players’ best reply to Cooperate is Defect and thus there

is no possibility for a Nash equilibrium in which both players cooperate. In our two-stage

4I shall assume away the unlikely Nash equilibrium in which, when two self-regarding players face each other,
one cooperates and the other defects, as this requires the cooperating agent to play a weakly dominated strategy.
Moreover, the model can be easily modified, at some notational expense, to make {D,D} a strictly dominant strategy
in the reduced-form one-stage game played by egoists (and thus for it to take the form of a classic prisonners’
dilemma). This can be done, for example, by assuming that, if a player chooses C, he incurs a small fixed cost. All
of the qualitative results of the paper carry through under such an assumption.
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game, on the other hand, as the proceeding discussion shows, when self-regarding players

face other-regarding players, equilibrium can entail σ = {C,C}.

3.2 General Pairings

We now look at the cases where self-regarding players face other-regarding players and

where other-regarding players face one another. The general stage-one utility payoff matrix,

for players of any combination is given in Lemma 2. Having proved this, we will then analyze

the two remaining cases by plugging in the appropriate values for θi and θ j.

Lemma 2. For a given pair of players, i and j, with any combination of preferences, the game can be

rewritten as a one-stage game with the following utility payoff matrix for player i:

σ j = C σ j = D

σi = C
(1 + α)2

(
3 + θi(3 + θi − θ2

j ) + 2θ j

)
16

1 + θi(1 + 2α + α2θi)
4

σi = D
1 + 2α + θi(1 − α2θ2

j ) + 2α2θ j

4
1 + θi

4

Proof. See Appendix A.2. �

Other-Regarding versus Self-Regarding

We now analyze the case in which an other-regarding player is matched with a self-regarding

one. In Proposition 1, we will state a sufficient condition for a unique, cooperative equilibrium.

Before doing this, we write the payoff matrix and then state and prove two preliminary

lemmas. We let player i, the column player, be other-regarding, and player j, the row player,

be self-regarding. To find the payoff matrix, we set θi = θ and θ j = 0. Plugging these into the

general pairings matrix from Lemma 2, we get:
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θ j = 0

σ j = C σ j = D

σi = C
(1 + α)2(3 + 3θ + θ

2
)

16
,

(1 + α)2(3 + 2θ)
16

1 + θ + α(2θ + αθ
2
)

4
,

1 + 2α(1 + αθ)
4

θi = θ

σi = D
1 + 2α + θ

4
,

1
4

1 + θ
4

,
1
4

To interpret this payoff matrix, let us first note that, for the other-regarding player i, if

the self-regarding player j defects, i’s best response is to cooperate, since α
(
2θ + αθ

2
)
> 0.

The certainty of this result is most easily understood in connection with the fact that, when

self-regarding players face one another, D weakly dominates C, and that in the purely self-

interested case, C is in fact one of two best responses to D. Here, when we add to player i’s

preferences, an arbitrarily small level of regard for the opponent, for him, D ceases to be a best

response to j’s playing D.

We have established that C is i’s best response to j’s playing D. We now look at j’s best

response to i’s playing C. Lemma 3 gives the relevant condition.

Lemma 3. For a self-regarding player j facing an other-regarding player i, j’s unique best response to

σi = C is the cooperative action, σ j = C, if and only if θi >
1
2 . (In the case where θi = 1

2 , both C and

D are best responses.)

Proof. See Appendix A.3. �

This condition, determining whether or not C is a best response for the self-regarding

player j, is independent of the technology parameter, α. The explanation for this is that α plays

what is essentially an analogous role in j’s fitness, whether he chooses D or C, since in either

case he receives fitness from the effort of his other-regarding opponent. In i’s choice of how

much effort to make, it is, thus, exclusively the value of θ that influences whether the collective
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incentive to expend effort that goes towards j’s fitness is sufficient to warrant j’s choosing the

cooperative technology. 5

While the opponent must be substantially other-regarding in order for the self-regarding

player to cooperate, it is nevertheless, the opponent’s marginal preference for his own fitness

that plays the key role in making C the self-regarding player’s best response. By cooperating,

the self-regarding player allows the other-regarding player to reap more of the benefits of his own

effort. This induces the other-regarding player to exert more effort; and this, then, benefits the

self-regarding player.

Next we look at the other-regarding player’s decision, in order to verify the conditions

under which CC is, in fact, an equilibrium. We state first the (less tidy) condition for C to be a

best response for the other-regarding player to the self-regarding player’s C.

Lemma 4. For an other-regarding player, i, facing a self-regarding player, j, i’s unique best response

to σ j = C is the cooperative action, σi = C, if and only if α > A+2
√

B
C , where A = 1 − θi(3 + θi),

B = 1 + θ2
i (2 + θi) and C = 3 + θi(3 + θi). (In the case of equality, both C and D are best responses.)

Proof. See Appendix A.4. �

This condition shows that for the other-regarding player, the technological superiority of

the cooperative production method must be sufficiently great, in order for him not to want to

defect given that the self-regarding player cooperates. In the event that this condition does

not hold but the other-regarding player has a value of θ greater than 1
2 , then there is no pure-

strategy equilibrium in the game. This is because the other-regarding player’s preference for

defection against cooperation would, as it were, take the game to DD, but then, his preference

for cooperation against defection would bring us back to CC, so there would be no compatible

best responses. We can now prove Proposition 1.

Proposition 1. Sufficient condition for a unique cooperative equilibrium

If (a) θi >
1
2 and (b) α > 2

√
26−3
19 ≈ 0.38, then when an other-regarding player, i, faces a self-regarding

player, j, the unique equilibrium is the cooperative one where σ = {C,C}.

5We should note that this result is a product of the imposed 50-50 distribution of output when CC is chosen.
It would be interesting to examine the results in cases where the CC distribution was allowed to vary or was the
product of some form of bargaining.
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Proof. We have shown in Lemma 1 that (a) is a necessary and sufficient condition for σ j = C

to be a best response to σi = C. From Lemma 1, we have that α > A+2
√

B
C is a necessary and

sufficient condition for σi = C to be a best response to σ j = C. Plugging θi = 1
2 into we have

α(θi = 1
2 ) = 2

√
26−3
19 . Since the inequality that must hold is

(1 + α)2(3 + 3θi + θ2
i )

16
>

1 + 2α + θi

4
,

we have that α > A+2
√

B
C holds for all θi >

1
2 . �

This says that if the cooperative technology is good enough for an other-regarding player

i with a value of θi equal to 1
2 to be willing to cooperate against a self-regarding player, then,

a fortiori, it is good enough for any player with a higher θi also to be willing to cooperate.

Note that it is not a necessary condition since for an other-regarding player with a value of θi

greater than 1
2 , the threshold value of α is lower than 0.38. So, provided α is at least this large,

any other-regarding player i with θi at least 1
2 can induce a self-regarding player to cooperate.

Other-regarding versus other-regarding

Finally, we consider the case in which the game is played by a pair of other-regarding players.

Here, the utility functions are such that θi = θ j = θ . If we plug these in to the general utility

payoff matrix given in Proposition 2, we get the following matrix (for player i):

θ j = 0

σ j = C σ j = D

σi = C
(1 + α)2[4(1 + θ)2

− (1 + θ)3]
16

1 + θ(1 + 2α + α2θ)
4

θi = θ

σi = D
1 + 2α + θ(1 + 2α2

− α2θ
2
)

4
1 + θ

4
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As in the case where an other-regarding player faces a self-regarding player, when other-

regarding players face each other, C is a best response to D, and the intuition for this is

precisely the same as before. Given that the opponent defects, any degree of regard for

the opponent’s fitness makes C the best response. So, to find the conditions for a unique

cooperative equilibrium, it suffices to compare the CC payoff with the DC payoff. Since our

interest lies primarily in the case where other-regarding players face self-regarding players,

and since it is computationally messy, I will not detail formally the conditions for CC to be an

equilibrium in the case of joint other-regarding players.

From the evolutionary standpoint of the model, parameters that yield a CC equilibrium

among mutually other-regarding players are of little interest unless they also yield a CC equi-

librium when other-regarding agents go up against self-regarding ones. Since, in our model,

we imagine that in each generation, players are randomly paired, unless other-regarding

players can induce cooperation against selfish ones, they will not be able to survive the evo-

lutionary process. So we simply need to verify that for the crucial parameter values already

identified, the CC payoff is greater than the DC payoff. This reduces to the inequality

θ
3
(α2
− 3α − 1) + θ

2
(α2 + 2α + 1) + θ(α2 + 10α + 1) + 3α2

− 2α − 1 > 0,

which can be readily checked to hold for all elements of the set {α, θ} ∈ [0.38, 1] × [ 1
2 , 1]. We

note, however, that, for θ sufficiently large, the CC equilibrium among other-regarding agents

breaks down. This, however, represents the unlikely scenario in which the agents are so

other-regarding, that each ‘cannot bear’ to see his opponent sacrifice fitness by overexerting

himself on behalf of the first, and thus he prefers to deviate to D, in order to induce a change

in technology that induces the latter to provide less effort. For our purposes, it thus seems

reasonable to choose 1 as a maximum value to consider for θ.

To recap what we have shown in Section 3, the two-stage game in which players first

choose a technology and then an effort level, if played only by self-interested players, can be

rewritten as a one-stage game with a weakly dominant strategy to defect. When we introduce

other-regarding preferences to the two-stage game, however, there is significant scope for both

players to choose the cooperative technology even when only one of them is other-regarding.
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The important factor in the two-stage game that allows for a cooperative equilibrium is the

difference in marginal return to effort for the other-regarding player when the game is at CC

versus when the game is at CD. Being in the former situation elicits enough additional effort

on the part of the player with θi >
1
2 that the self-regarding player eschews the opportunity

to defect. Provided that α > 0.38, any other-regarding player who can induce a self-regarding

player to cooperate will also, himself, cooperate with the self-regarding player.

4 Evolutionary Analysis

In this section, we examine the population steady state as a function of θ and α, assuming the

sufficient criterion stated in Proposition 1 is satisfied, for cooperative equilibria when at least

one of the players is an altruist. In particular, we will show that, at steady state, the proportion

of other-regarding agents is strictly positive if and only if the worst fitness payoff for other

regarding agents is greater than that of self-regarding agents.

In order to prove Proposition 2, we note that we can compute the steady state by setting

the average fitness payoffs of the two types equal to one another, since we assume that agents

are randomly paired. We assume the population to be a continuous mass of agents, each of

whom embodies one of two genes, represented by θ = θ and θ = 0 . After a given generation

of agents plays the game, the next generation is populated by a proportion of each type of

agent, determined by the average fitness payoff of their ‘parents’.

We let p ∈ [0, 1] denote the fraction of the population with the gene θ = 0 and 1 − p the

fraction with the other-regarding gene, θ = θ . The steady state value, pSS, thus represents, as

a function of θ and α, the point at which neither gene has a tendency to displace the other in

the population as a whole. Lemma 5 states the average fitness payoff of each type of agent as

a function of p and then gives the steady state proportion of self-regarding agents.

Lemma 5. (a) Denote the average fitness payoff for self-regarding agents by f0 and the same for other-

regarding agents by fθ. Provided that {α, θ} ∈ (0.38, 1) × ( 1
2 , 1), these are given by the following

expressions:

f0 = p ·
1
4

+ [1 − p] ·
(1 + α)2(3 + 2θ)

16
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fθ = p ·
(1 + α)2(3 − θ

2
)

16
+ [1 − p] ·

(1 + α)2(3 + 2θ − θ
2
)

16

(b) Given these average fitness payoffs for the two types of agents the steady state proportion of

self-regarding players, pSS, is given by

pSS =
θ

2
(1 + α)2

3(1 + α)2 − 4
.

Proof. See Appendix A.5. �

We are now in a position to explain the intuition leading up to Proposition 2. From the

expressions for f0 and fθ, given in Lemma 5, we see that, when there is cooperation, the

highest fitness payoff goes to a self-regarding agent, paired against an other-regarding agent.

The second highest cooperative payoff goes to other-regarding agents playing one another,

and the third highest to an other-regarding agent against a self-regarding one. Since self-

regarding agents, playing intramurally, never use the collective technology, they get such a

pairing yields 1
4 to each agent. The relative size of the cooperative payoffs compared to 1

4 ,

however, is ambiguous.

If, for example, we assume the value of α to be 2
5 (near the low end of our assumed range),

and take the limit, as θ approaches 1, of the other-regarding agent’s fitness payoff when facing

a self-regarding one, we find that it equals 49
200 <

1
4 . As α increases, or θ decreases, the rank

of this payoff for the other-regarding agent moves from last place to second-to-last place. In

such a case, where this other-regarding payoff occupies last place, the gene θ = θ will be

driven to extinction. Since it is always the case that self-regarding agents receive more fitness

than do other-regarding ones in cooperative situations, the indispensable advantage that the

θ = θ gene needs is for its worst fitness payoff be greater than the worst for the self-regarding

agents. We now state Proposition 2.

Proposition 2. The steady state proportion of other-regarding agents is strictly positive if and only if

the worst fitness payoff for other-regarding agents is strictly greater than the worst fitness payoff for

self-regarding agents.

Proof. The worst fitness payoff for each type of agent comes when playing against the self-
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regarding type. The self-regarding fitness payoff against themselves, f(0,0), is equal to 1
4 . The

other-regarding fitness payoff against self-regarding agents, f(θ,0) , is given by

f(θ,0) =
(1 + α)2(3 − θ

2
)

16
.

We show that f(θ,0) > f(0,0) ⇔ pSS < 1. Remark that f(θ,0) > f(0,0) is equivalent to

(1 + α)2(3 − θ
2
)

16
>

1
4
⇔ 1 >

θ
2
(1 + α)2

3(1 + α)2 − 4
= pSS,

where the final equality holds due to part (b) of Lemma 5. �

Interpretation

As the proof of Proposition 2 suggests, the proportion of other-regarding genes in the pop-

ulation is in some sense, driven by the relative value of the other-regarding agents’ fitness

payoff against self-regarding agents versus the self-regarding agents’ fitness payoff against

themselves. This can be seen more clearly by the following rearrangement of the steady state

equation:

(1 + α)2(3 − θ
2
/pSS)

16
=

1
4
.

This shows that, at steady state, other-regarding agents’ fitness payoff against self-regarding

agents, with the negative term, θ
2
, weighted by the proportion of self-regarding players in

the population, is equal to the self-regarding agents payoff against their own type. From this

equation, we can easily see that as the value of f(θ,0) approaches, from above, the value of f(0,0)

, the proportion of self-regarding genes in the population goes to one.

Using this rearrangement, we are in a better position to make comparisons between each

type’s best fitness payoffs and between each type’s worst fitness payoff. Note that the best

payoffs for the two types are, respectively,

f(0,θ) =
(1 + α)2(3 + 2θ)

16

16



for the self-regarding agents, and

f(θ,θ) =
(1 + α)2(3 + 2θ − θ

2
)

16

for the other-regarding agents. Further note that, when cooperating, self-regarding agents

give the effort level eCC
(0,θ)

=
(1+α)2

16 . We can thus write the difference between the respective best

payoffs as

f(0,θ) − f(θ,θ) = eCC
(0,θ)
· θ

2
. (1)

Equation (1) shows that, when self- and other-regarding agents cooperate with one another,

the former come away with a fitness differential equal to the amount of effort they give times

the square of the other-regarding agent’s altruism coefficient.

At steady state, there is a similar expression relating the two worst payoffs. Stating the

respective worst payoffs, we have, for other-regarding agents,

f(θ,0) =
(1 + α)2(3 − θ

2
)

16
,

and, for self-regarding agents,

f(0,0) =
1
4

=
(1 + α)2(3 − θ

2
/pSS)

16
.

Taking the difference between these two fitness payoffs gives the expression

f(θ,0) − f(0,0) = eCC
(0,θ)
· θ

2
·

[
1 − pSS

pSS

]
. (2)

From equation (2), we see that at steady state, the fitness differential between the worst

payoff for the other-regarding agents and the worst payoff for the self-regarding agents is

equal to the cooperative effort level of the latter, multiplied by the square of other-regarding

agents’ altruism coefficient, multiplied by the ratio of other-regarding agents to self-regarding

agents in the population.

Interpreted jointly, equations (1) and (2) lead to the following conclusion. On the one
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hand, equation (1) shows that the ‘selfish gene’, θ = 0, is rewarded by natural selection for

programming its agents to choose the optimal level of effort for the sake of their own fitness,

given the technology that has been chosen. Also, this gene is rewarded for accepting the

benefits bestowed on it by the altruistic gene, θ = θ. On the other hand, equation (2) shows

the greater frequency with which the altruistic gene is able prompt cooperation. Despite the

individual overexertion by agents with this gene, matched together, the other-regarding agents

come closer to the optimal collective level of effort. If the former is a more significant boon,

then the population tends towards a greater number of self-regarding agents at steady state,

whereas if the latter is a greater asset, it tends towards a greater number of other-regarding

agents.

5 Conclusion

At the outset of this paper I suggest that some forms of cooperative behavior may be driven

by a combination of altruism and self-interested concern for the future. In the model, I have

shown a mechanism in which, when pairs of agents interact, one altruist can serve as a catalyst

for mutual cooperation, even when his opponent is an egoist. In identical situations, when

egoists face each other, they do not cooperate. Since, cooperation comes at some expense

to the altruistic agents, after individual instances of cooperation, egoists come away with a

higher level of fitness than altruists. However, since altruists elicit cooperation from both

types of agent, whereas egoists only from altruists, the altruists achieve a higher worst payoff

that the egoists. Calculating the population steady state, I find that this dynamic can lead to

stable populations in which both types of agent survive evolution.

In the study of how humans came to be ‘the cooperative species’, it is a central issue

whether or not altruistic traits played an important role. Altruism makes cooperation easier

to explain, but, a priori, egoism seems to have a selective advantage. By appealing to situations

where commitment implies a distributive indivisibility, this paper shows one mechanism that

could have helped altruistic traits overcome their apparent evolutionary disadvantage while

at the same time encouraging cooperative behavior by non-altruists.
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Appendices

A Omitted Proofs

A.1 Lemma 1

Proof. In each possible state of the second stage, each player i maximizes the function ui = fi
with respect to ei. Thus we have the following maximization programs:

(i) If σ = {C,C}, then, in the second stage, player i maximizes 1+α
2
√

ei − ei,which is solved by

ei =
(1 + α)2

16
. Plugging ei = e j =

(1 + α)2

16
into 1+α

2

(√
ei +
√e j

)
− ei yields uCC

i =
3(1 + α)2

16
.

(ii) Given any other pair of actions chosen in the first stage, player i maximizes
√

ei − ei,
which is solved by ei = 1

4 . If σ = {C,D} or σ = {D,D}, then plugging this solution into
√

ei − ei gives uCD
i = uDD

i =
1
4

. If σ = {D,C}, then plugging ei = e j = 1
4 into

√
ei + α

√e j − ei

gives uDC
i =

1 + 2α
4

.

�

A.2 Lemma 2

Proof. In each possible state of the second stage, each player, i, maximizes the function ui =
fi + θi f j with respect to ei. Thus, we have the following cases:

(i) If σ = {C,C}, then player i maximizes (1+α)(1+θi)
2

√
ei−ei, which is solved by ei =

(1+α)2(1+θi)2

16 .
Plugging this and the analogous value of e j into 1+α

2 (
√

ei+
√e j)−ei+θi

(
1+α

2 (
√

ei +
√e j) − e j

)
gives uCC

i =
(1+α)2

(
3+θi(3+θi−θ2

j )+2θ j

)
16 .

(ii) If σ = {C,D}, then player i maximizes (1 + αθi)
√

ei − ei, which is solved by ei =
(1+αθi)2

4 .
Since the defecting player, j, exerts no fitness externality, we have e j = 1

4 . Plugging these

values into
√

ei − ei + θi(
√e j + α

√
ei − e j) gives uCD

i =
1+θi(1+2α+α2θi)

4 .

(iii) If σ = {D,C}, reversing the indices in the equilibrium effort levels found in case (ii) and

plugging into
√

ei + α
√e j − ei + θi(

√e j − e j) gives uDC
i =

1+2α+θi

(
1−α2θ2

j

)
+2α2θ j

4

(iv) If σ = {D,D}, then, as established in case (ii), we have ei = e j = 1
4 . Plugging these values

into
√

ei − ei + θi(
√e j − e j) gives uDD

i = 1+θi
4 .

�

A.3 Lemma 3

Proof. The cooperative action, σ j = C is the unique best response to σi = C if and only if the

inequality (1+α)2(3+2θi)
16 > 1+2α(1+αθi)

4 holds. This is equivalent to θi >
1
2 . �
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A.4 Lemma 4

Proof. The cooperative action, σi = C is the unique best response to σ j = C if and only if the

inequality
(1+α)2(3+3θi+θ2

i )
16 > 1+2α+θi

4 holds. We show that this holds iff α > A+2
√

B
4 . Equivalent to

the above inequality is (θ2
i + 3θi + 3)α2 + (2θ2

i + 6θi − 2)α+θ2
i −θi − 1 > 0. Using the quadratic

formula the find the roots of the left hand side gives

α =
1 − θi(3 + θi) ± 2

√
1 + θ2

i (2 + θi)

3 + θi(3 + θi)
≡

A ± 2
√

B
C

.

Both ‘plus’ and ‘minus’ roots are real for θi > 0. We are interested only in positive values of
both α and θi . But the ‘minus’ root is positive only when θi is negative. Thus we have

α >
A + 2

√
B

C
⇔

(1 + α)2(3 + 3θi + θ2
i )

16
>

1 + 2α + θi

4
.

�

A.5 Lemma 5

Proof. (a) In the proof of Lemma 2, we have calculated the level of effort each agent exerts for
each state possible stage-two state of the game. Since {α, θ} ∈ (0.38, 1) × ( 1

2 , 1) , we have

(i) when an other-regarding player, i, faces a self-regarding player, j, σi = σ j = C, and

thus fi = 1+α
2 (
√

ei +
√e j) − ei =

(1+α)2(3−θ
2
)

16 and f j = 1+α
2 (√e j +

√
ei) − e j =

(1+α)2(3+2θ)
16 ,

(ii) when other-regarding agents face each other, we also have σi = σ j = C, hence

fi = f j = 1+α
2 (
√

ei +
√e j) − ei =

(1+α)2(3+2θ−θ
2
)

16 ,

(iii) when self-regarding agents face one another, σi = σ j = D , so fi = f j =
√

ei − ei = 1
4 .

With probability p, a given agent will be paired with a self-regarding opponent and, with
probability 1 − p, he will be paired with an other-regarding opponent. This yields the
respective expressions for f0 and fθ.

(b) The steady state proportion of self-regarding players in the population, pSS, is found by
equating the average fitness payoffs for self-regarding and other-regarding players:

pSS
·

1
4

+ [1− pSS] ·
(1 + α)2(3 + 2θ)

16
= pSS

·
(1 + α)2(3 − θ

2
)

16
+ [1− pSS] ·

(1 + α)2(3 + 2θ − θ
2
)

16
.

Solving for pSS yields pSS =
θ

2
(1+α)2

3(1+α)2−4 .
�
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