Supplementary Note for Walrasian Equilibrium in Large, Quasi-linear Markets

Eduardo M. Azevedo^{*} E. Glen Weyl[†] Alexander White[‡] February 28, 2013

This note shows that, within the quasi-linear framework we consider, economies with a large but finite number of consumers admit prices that clear the market approximately.

1 Economies with Finite Numbers of Consumers

Finite economies are identical to the continuum economies in the main text regarding preferences and goods, but have a finite collection of utilities $\mathscr{U} = \{u_1, \ldots, u_U\}$; each utility has a finite number of agents, n_i assigned to it. Thus the total (finite) number of agents in the economy $N = \sum_{i=1}^{U} n_i$.

The endowment vector is a vector of rational numbers in (0, 1) with denominators that are integral factors of N. The interpretation is that an economy with endowment q has a vector of units of goods available corresponding to Nq. An allocation is a map $\mathbf{x} : \mathscr{U} \to \Delta X$ with the property that $\mathbf{x}(u_i)$ has denominators in all of its coordinates that are integral factors of n_i . Define the G-dimensional vector of the measure of each good consumed $\tilde{\mathbf{x}}$ as in the main text. An allocation is feasible if

$$\sum_{i} n_i \tilde{\mathbf{x}} \left(u_i \right) = Nq.$$

A *m*-replication of an economy, for a positive integer N, is the economy where each n_i is multiplied by m. Demand sets of an m-replica $D^m(p, u_i)$ are defined as before, ex-

^{*}The Wharton School at the University of Pennsylvania; eazevedo@wharton.upenn.edu

[†]University of Chicago Department of Economics & Toulouse School of Economics; weyl@uchicago.edu

[‡]Tsinghua University School of Economics and Management; awhite@sem.tsinghua.edu.cn

cept that, again, only rational allocations with appropriate denominators are allowed. A competitive equilibrium is a price-allocation pair (p, \mathbf{x}) such that \mathbf{x} is feasible, and for each *i* we have $\mathbf{x}(u_i) \in D(p, u_i)$. The *continuum replication* of a finite economy is the continuum economy defined by $\eta(S) = \sum_i \frac{n_i}{N} \delta_{u_i}$ and the endowment vector *q*; for clarity we denote the demand set in the continuum replication, the convex hull of $D^1(p, u_i)$, as $D^{\infty}(p, u_i)$.

Aggregate demand of the m replica is defined as

$$D^{m}(p) = \{\sum_{i} \frac{n_{i}}{N} \cdot \tilde{\mathbf{x}} : \mathbf{x}(\mathbf{u}_{i}) \in D^{m}(p, u_{i}) \text{ for all } i\}.$$

Aggregate demand of the continuum replication is defined as in the main text and denoted D^{∞} .

The following Proposition summarizes the relationship between continuum and discrete economies.

Proposition 1. Any equilibrium price of an m-replica is an equilibrium price of the ∞ replica (this is true in particular for m = 1).

Any equilibrium price p^* of the ∞ replica approximately clears the market in finite but large replicas. That is, there exist a sequence of $d^m \in D^m(p^*)$ such that

$$||d^m - q||_{\infty} \to 0$$

as m converges to infinity.

Proof. First note that an equilibrium price of the *m*-replica is simply a price vector such that $q \in D^m(p)$. Note moreover that, by definition, $D^{\infty}(p) \supseteq D^m(p)$. That is, because in the infinite replica agents of a given type can demand arbitrary mixtures over bundles, while the mixtures are restricted in *m*-replicas by divisibility constraints, the ∞ -replica demand correspondence has a strictly larger image. This observation proves that every equilibrium price of the *m*-replica is an equilibrium price of the ∞ -replica.

For the second part, note that $D^{\infty}(p^*)$ is a convex set, generated by convex combinations of a finite set of extreme points. Moreover, $q \in D^{\infty}(p^*)$, as p^* is an equilibrium for the ∞ -replica. The set $D^m(p^*)$ is composed of a finite set of points, and is a subset of the polytope $D^{\infty}(p^*)$. Note, however, that $D^m(p^*)$ must contain all convex combinations of the extreme points of $D^{\infty}(p^*)$ such that the weights are multiples of 1/m. Therefore, the distance between q and $D^m(p^*)$ converges to 0 as m grows. \Box

We end this section with a curious observation. Consider an equilibrium p^* of the continuum replica. It is also true that, for infinitely many values of m, p^* is an exact equilibrium of the *m*-replica. To see this, note that since q is in the convex set $D^{\infty}(p^*)$, it can be written as a convex combination of the extreme points of $D^{\infty}(p^*)$. That is,

$$q = \sum_{i} \alpha_i d_i,$$

where the $\alpha_i \in (0, 1)$, $\sum_i \alpha_i = 1$, and the d_i are extreme points of $D^{\infty}(p^*)$. Without loss of generality, we may take the d_i to be linearly independent. Let d be the matrix whose columns are the d_i , and α the column vector of coordinates α_i . We then have

$$q = d\alpha$$
, and consequently
 $d'q = d'd\alpha$.

Since the d_i are linearly independent, the matrix d'd is left-invertible. Therefore,

$$\alpha = (d'd)^{-1}d'q.$$

In particular, this implies that the α_i are rational numbers. Therefore, there exists m_0 such that all α_i are integer multiples of $1/m_0$. Since $D^m(p^*)$ includes all convex combinations of the vertexes of $D^{\infty}(p^*)$ with weights multiple of 1/m, then $D^m(p^*)$ will include q for all m that are multiples of m_0 . In the example in the text, we had found that exact equilibria existed for every even replication of the economy. The reasoning above shows that this is a more general phenomenon.