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Abstract

This paper provides an econometric framework to analyze two-period simple

contracts models where the principal offers the agent to choose between a fixed-price

contract and a cost-reimbursement one in each period. We establish nonparametric

identification for all model primitives, conditional on that the agent exerts effort.

These primitives include agent’s cost and disutility functions, distribution of innate

costs (type), and parameters that characterize agent’s bargaining power and the

intertemporal preference. We then propose a consistent estimation procedure. In
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we find strong evidence that the agent’s optimal effort is monotonic in its innate

cost, rather than being a constant as would be implied by linear cost functions. A
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constant optimal effort.

Keywords: Simple contracts, multi-period, measurement error, nonparametric identifi-

cation.

JEL: C14, D82.

∗Hong gratefully acknowledges support from the National Natural Science Foundation of China (Grant

No. 71703078).
†Department of Economics, Texas A&M University, College Station, TX 77843; email: y.an@tamu.edu.
‡SEM, Tsinghua University, Beijing, China 100084; email: hongshj@sem.tsinghua.edu.cn.
§Department of Economics, University at Albany, State University of New York, Albany, NY 12222;

email: dzhang6@albany.edu.

1



1 Introduction

Due to the fundamental role it plays in the studies of informational asymmetries and

incentives, contract theory has attracted much attention from economists during the past

three decades. One branch of the contracts are the complex optimal contracts in the spirit

of Laffont and Tirole (1986) where the optimal payment to agent is a nonlinear function

of both agent’s unobserved type and their observed cost. Recent studies suggest that

another branch, the simple menus of contracts which oftentimes specify the payment only

as a function of the agent’s observed cost or even as a constant, could be more useful in

practice (e.g., Bajari and Tadelis, 2001). Theoretical and empirical evidence show that

these simple menus could capture a substantial proportion of the surplus that complex

optimal nonlinear contracts would achieve (Rogerson, 2003; D’Haultfoeuille and Février,

2015).

Despite the theoretic importance of simple contracts and their wide usage in various

sectors in practice, econometric analyses on this large class of contracts are largely missing

in the literature. In this paper we provide the first set of positive results on identifica-

tion of multi-period simple contracts by focusing on the “fixed-price-cost-reimbursement

(FPCR)” menu. This menu consists of a fixed-price (FP) contract, in which the pay-

ment to the agent is a fixed price, regardless of the agent’s realized cost; and a cost-

reimbursement (CR) contract, in which the agent is reimbursed exactly for the realized

cost. The FPCR menu is widely used in practice. For example, FP contracts or CR

contracts are commonly employed by the U.S. Department of Defense (Rogerson, 1992).

Many local authorities in France also use the FPCR menu to contract with operators to

provide the transport service. Other examples include the Indian customized software

industry (Banerjee and Duflo, 2000), the U.S. Air Force engine procurement (Bajari and

Tadelis, 2001), the offshore software industry (Gopal et al., 2003), and among others.

A multi-period FPCR contract may be implemented in two forms: a contract under

renegotiation, which allows the principal and the agent to renegotiate on the initial con-

tract at certain time during the implementation, or a contract under commitment, which

prohibits any adjustment of initial contract during implementation. Since the equilibrium

outcome of a multi-period contract under commitment is identical to that of a one-period

(static) contract, we focus on the more flexible contracts under renegotiation.

We first construct a theoretical model for two-period (dynamic) FPCR contracts under

renegotiation by extending the work of Gagnepain et al. (2013), which provides a simple

framework for dynamic FPCR contracts. Briefly, our theoretical model is set up as follows:

At the beginning of the first period, an agent chooses the most profitable contract from the
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FPCR menu provided by the principal for two periods. The agent is allowed to renegotiate

with the principal and make changes to his initial choice at the end of the first period

if the contract is renegotiable. At the equilibrium, the range of agent’s types can be

distinguished into three segments, with agents whose types belong to a same segment

making the same choice of contracts: Most efficient agents choose FP contracts in both

period; Medium efficient agents choose a CR contract in the first period, followed by a

FP contract in the second period; And least efficient agents choose CR contracts in both

periods.

We then provide constructive strategies to identify the structural elements, which take

multiple steps as follows: (i) By adopting the recently developed methodology in mea-

surement errors (Schennach and Hu, 2013), we recover the distribution of the unobserved

optimal effort exerted by agent from the joint distribution of two observable covariates

correlated with the effort. Further, the one-to-one mapping between agent’s observed

cost and optimal effort implied by the equilibrium conditions enables us to back out the

optimal effort corresponding to each of the observed cost; (ii) Relying on an exclusion

restriction, i.e., the existence of some exclusion variable that directly affect the optimal

effort but is independent of innate costs (types), we identify the cost structure of agent.

The identification is achieved by exploiting the heterogeneous quantiles of the realized

cost conditional on the exclusion variables while the quantiles of the innate cost remain

the same; (iii) We recover the innate costs from the identified cost function as well as the

structural link between innate cost and optimal effort. Consequently the distribution of

the innate cost on the support associated with fixed-price contracts can be recovered. We

then employ the structural elements identified above and the observed payment to the

agent to recover parameters that characterize agent’s bargaining power and intertemporal

preference.

Due to the fact that the optimal effort associated with CR contracts is always zero, it

is impossible to identify the cost function on the part of its domain that corresponds to CR

contracts without imposing additional assumptions. We show that once the cost function

is parametrized, we are able to nonparametrically identify all other model primitives on

their full support given the identification of cost parameters. Based on the argument

of identification, we propose a feasible semiparametric procedure to estimate the model

components.

Our identification strategy is potentially applicable to several variations of FPCR

menus. A leading case is a linear cost sharing-cost reimbursement (LCSCR) menu where

the fixed-price contract is replaced by a linear cost-sharing (LCS) contract (e.g., Chu and

Sappington, 2007). The applicability of our identification result to LCSCR menu follows
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from the fact that LCS contracts provide additional variation of payments compared with

FP contracts. Our strategy also readily carries over to one-period (static) FPCR contracts

and two-period contracts with commitment. This is because the equilibrium outcomes in

a one-period setting is similar to that in the two-period setting with renegotiation, in the

sense that they provide similar information for identification, and the two-period contracts

with commitment is just twice-repeated version of equilibrium in a one-period (static)

setting, as proved in Laffont and Tirole (1990). Last but not least, our identification

results for two-period FPCR contracts can be potentially extended to more flexible menus

where the observed costs may be linked with agent’s unobserved type and effort.

Finally, we apply our method to study the dynamic transport procurement contracts

in France. The objective of the empirical study is to estimate the model primitives and

to test the convexity of the cost function, which induces monotone optimal effort, rather

than constant optimal effort induced by a linear cost function which is widely adopted in

the related literature (e.g., Laffont and Tirole, 1988, 1990, Rogerson, 2003, and Gagne-

pain et al., 2013, among many others ). Our estimates suggest that the cost function of

agent is convex in innate cost. Moreover, we utilize these estimates to conduct a coun-

terfactual analysis on the welfare comparison between FPCR contracts under monotone

optimal effort and constant optimal effort. The counterfactual analysis shows that in

French transport industry the social welfare of FPCR contracts under monotone optimal

effort is 14.6 million euros more than that under constant optimal effort. An important

insight from these empirical findings is that, when investigating the efficiency and welfare

implications of simple contracts (either as researchers or policy makers), it is crucial to

take into account the monotonicity of optimal effort determined by the functional form

of agent’s cost function.

This paper contributes to a large literature on the econometrics of contract models.

In this literature, studies on identification are still limited. Notably, Perrigne and Vuong

(2011) establish nonparametric identification of a static complex contract model tailored

from the seminal paper Laffont and Tirole (1986). More recently, D’Haultfoeuille and

Février (2015) show partial nonparametric identification of simple compensation contracts

using exogenous variations of contracts. Our study differs from both. The identification

argument in Perrigne and Vuong (2011) does not apply to the simple contracts considered

in this paper. This is mainly because the one-to-one mapping between the observed price

of the product and the private type of the agent, a key to identification in Perrigne and

Vuong (2011), is unavailable for simple contracts where such a payment relationship does

not exist. Compared with D’Haultfoeuille and Février (2015), our paper differs in both
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model setup and identification strategies.1 In a broader view, our identification result is

related to the econometric analysis on a richer class of moral hazard and adverse selection

models where an agent with a continuum of types is only offered a menu of a few simple

contracts by the principal, for example the insurance models studied by Aryal et al. (2010)

and the nonlinear pricing models studied by Luo et al. (2018). In addition, identifying

structural models through measurement errors has been widely used in the literature. See,

for instance, Hu (2017) for a recent survey. Nevertheless, to the best of our knowledge,

our paper is the first to employ the results in measurement errors to identify contract

models. Our empirical study contributes to a growing literature on empirical industrial

organization (IO) studying contracts. Our study is most closely related to Gagnepain

et al. (2013), who use the same source of data to evaluate the negotiation cost of FPCR

contracts under the assumption of a linear cost function.

The rest of the paper is organized as follows. Section 2 presents the general dynamic

FPCR model. Section 3 establishes the main identification results. And Section 4 provides

a feasible estimation procedure. Section 5 analyzes the French transport procurement

contracts. Section 6 concludes. Proofs are collected in the appendix.

2 The Model

2.1 Basic setup

A risk-neutral principal wishes to procure a project from a risk-neutral agent by offer-

ing a two-period menu consisting of two types of contracts in each period: a fixed-price

(FP) contract in which the payment is dependent upon the agent’s realized cost; and a

cost-reimbursement (CR) contract in which the agent is reimbursed exactly for the re-

alized cost. The menu of contracts consists of one FP contract and one CR contract is

called fixed-price-cost-reimbursement (FPCR) menu. An agent’s innate cost (or “type”)

θ is a random draw from a cumulative distribution function F (·), with a density f(·) on

a support [θ, θ̄] ⊂ R. The agent observes its private value of θ, and the principal only has

the knowledge of F (·). The cost structure of realizing the project is

ct = H(θ − et), t ∈ {1, 2},

1In D’Haultfoeuille and Février (2015), agent’s disutility function of effort is not explicitly modeled,

in the sense of which their setting deviate from standard contract models. In contrast, Our paper focus on

a large class of standard regulatory contracts. D’Haultfoeuille and Février (2015) provide an informative

partial identification result. We aim at developing regularity conditions for point identification.
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where ct is the realized cost in period t; H(·) is a general cost function; the innate cost

θ represents the agent’s management and production skills, which is invariant during two

periods, and the private effort et ≥ 0 captures agent’s actions taken to reduce cost ct.

The exerted effort et incurs some disutility according to a disutility function ψ(et). Both

type θ and effort et are private information to the agent.

Given the principal’s payment schedule qt, t = 1, 2, the agent maximizes the following

intertemporal profit by choosing a two-period contract from the FPCR menu and then

exerting the optimal effort et,

u = ru1 + (1− r)u2, (1)

where we suppress the arguments of u, u1 and u2 for ease of exposition. The weight r is

defined as r = 1/(1 + δ) with δ being the discount factor, it is a measure of the relative

length or the relative importance of the first period.2 ut is the the information rent (profit)

of the agent with type θ in period t = 1, 2:

ut ≡ qt − ct − ψ(et) = qt −H(θ − et)− ψ(et). (2)

The principal designs the optimal menu of contracts by specifying the two-period fixed

prices (q1, q2) for FP contracts to maximize the expected social welfare

π =

∫
π̃(θ)dF (θ),

where π̃(θ) is the social welfare generated by the agent with innate cost θ:

π̃(θ) ≡ S − (1 + λ)[rq1 + (1− r)q2] + α[ru1 + (1− r)u2], (3)

In the definition above, the dependence of the right side of (3) on θ is through the

dependence of both u1 and u2 on θ. S is the gross surplus generated by the procured service

and assumed to be sufficiently large to guarantee the desirability of the project. The cost

of public funds λ > 0 captures some dead-weight loss due to a distortionary taxation

for raising subsidies with the principal’s intertemporal payment rq1 + (1 − r)q2. The

parameter α is the weight assigned to firms’ profits by the principal (Baron and Myerson,

1982; Baron, 1988), which can reflect the extent of the political pressure imposed by

the agent on the political principals (Faure-Grimaud and Martimort, 2003) and therefore

2The relationship between the payoffs in the first and second period is determined by the intertemporal

weight r. In this sense δ not only reflects the discount factor, but, more in general, the relationship

between the payoffs in the two periods. This interpretation follows from Laffont and Tirole (1990), who

assume δ ∈ (0,∞).
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can be interpreted as firm’s bargaining power against the principal in negotiation. We

maintain in our paper that α < 1 + λ, which captures the relevant trade-off between

extracting profit and inducing efficient cost-reducing effort. Intuitively, the optimal menu

of contracts offered by the principal trades off efficiency and rent extraction: FP contracts

with large subsidy would induce the first-best effort while leaving much information rent

to more efficient agent; CR contracts, however, nullify this rent without any incentive for

agent to make cost-reducing effort.

2.2 The problems of principal and agent

Based on the setup above, we analyze the principal and agent’s problem. We main-

tain that both H(·) and ψ(·) are twice continuously differentiable and that integration

and differentiation can be interchanged. For a generic function a(·) with more than one

argument, we denote its derivative with respect to the k-th argument by ak(·). We impose

the following standard assumption in contract literature (e.g., Laffont and Tirole, 1993).

Assumption 1 (i) Agent’s cost function H(·) satisfies H(·) ≥ 0, H ′(·) > 0, H ′′(·) > 0.

(ii) Agent’s disutility function satisfies ψ(·) ≥ 0, ψ′(·) > 0, ψ′′(·) > 0, ψ(0) = 0.

Recall that in each period, an agent with type θ makes a choice between FP and CR

contracts, and then exerts effort to fulfill the contract by maximizing profit specified in

(2). Let e∗ denote the optimal effort of the agent. If the agent chooses a CR contract,

he is only reimbursed the realized cost. We can show under Assumption 1 that in a CR

contract 1, e∗ = 0 and the cost is

c = H(θ). (4)

If the agent chooses a FP contract, he will exert a type-dependent optimal effort e∗(θ) > 0,

which satisfies the first order condition

H ′(θ − e∗) = ψ′(e∗). (5)

The realized cost of the agent is

c = H(θ − e∗(θ)). (6)

We summarize the results in the following lemma.

Lemma 1 Under a CR contract, an agent with type θ exerts no effort and the cost is c =

H(θ). If the agent chooses an FP contract, his optimal effort e∗(θ) is strictly increasing

in type θ and 0 < de∗/dθ < 1.
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Denote by e the proper lower bound of effort levels associated with all FP contracts.

An implication of Lemma 1 is e = e∗(θ), i.e. e is the optimal effort corresponding to θ.

Next, we analyze the two-period contract with renegotiation by using the renegotiation-

proof principle in the related literature.3 Under renegotiation the principal provides three

options for an agent: A two-period FP contract (FF contract) characterized by the fixed

prices in two periods: (b1, b2); a first-period CR contract followed by a second-period

FP contract (H(·), b3), denoted by CF contract, where b3 is the fixed-price in the sec-

ond period; and a two-period CR contract (H(·), H(·)), denoted by CC contract, where

H(θ) indicates the cost in a CR contract.4 By using the renegotiation-proof principle,

we obtain the following proposition that characterizes the equilibrium outcome of the

renegotiation-proof menu of contracts (b1, b2, b3) :

Proposition 1 Under Assumption 1, the optimal renegotiation-proof menu of two-period

contracts (b1, b2, b3) satisfy b1 = b2 ≡ b < b3 ≡ b̄ with two cut-off types (θl, θu) such that

θ ≤ θl < θu ≤ θ̄ and

b̄ = H(θu − e∗(θu)) + ψ(e(θu)),

b = r[H(θl − e∗(θl)) + ψ(e∗(θl))] + (1− r)b̄,(
1− α

1 + λ

)
F (θu)− F (θl)

f(θu)
=

H(θu)− b̄
H ′(θu − e∗(θu))

. (7)

The most efficient types within the lower subinterval [θ, θl] choose FP contracts in both

periods; the intermediate efficient ones within the intermediate subinterval (θl, θu] choose

CR and FP contracts in the two periods, respectively; and the least efficient ones within

the larger subinterval (θu, θ̄] choose CR contracts in both periods.

The intuition for b < b̄ can be ascribed to the fact that fixed prices must be raised suf-

ficiently to induce those intermediate efficient firms with the initial choice of CR contracts

to switch to FP contracts when the information on the agent’s innate cost is revealed after

the first period, whereas most efficient firms would choose FP contracts at the beginning

even they are paid a relatively low fixed price b in both periods.

3Renegotiation-proof principal: if a contract is a perfect Bayesian equilibrium in which renegotiation

occurs in equilibrium, then there exists a renegotiation-proof contract that achieves the same outcome.

In other words, any long-term agreement which is renegotiable could be replaced by another long-term

contract with a second-period continuation equal to the renegotiated offer.
4Note that the option of CF contract arises from the fact that agent may renegotiate to change the

choice of contract made at the beginning of the first period. The choice consisting of a first-period FP

fixed price contract followed by a second-period CR contract is never optimal for an agent. This is because

the profit from an FP contract is strictly positive almost surely while the profit with CR contracts is

always zero.
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3 Identification

This section presents identification of the model primitives for the optimal renegotiation-

proof menu of two-period contracts. In what follows we denote random variables by

upper-case letters and their realized values by lower-case letters. For each contract, the

data report realized cost C, two fixed prices (B,B), and two binary variables D(1), D(2),

with D(1) = 1 and D(2) = 1 indicating agent’s choice of FF and CF contract, respectively.

Consequently, the binary variable 1 − D(1) − D(2) indicates the choice of CC contract.

We also observe a vector of variables Z that summarize the characteristics of the prin-

cipal, agent, and contract. Our identification result applies conditional on Z. While

presenting our method in this section, we suppress Z in the notation for simplicity. Let

S ≡ [F (·), H(·), ψ(·), α/(1 +λ), r] denote our model primitives to be identified. Note that

the parameters α and λ cannot be separately identified because only the ratio α/(1 + λ)

matters for the optimal menu of contract designed by the principal (r.f. (7)). We maintain

that the observed data are generated from the model primitives S and the equilibrium

conditions presented in the preceding section are satisfied .

The model is identified up to a monotone transformation of the innate cost θ. The

lemma below shows that an alternative model structure S̃ ≡ [F̃ , H̃, ψ̃, α/(1 +λ), r] where

F̃ (·) = F (·/ξ1), H̃(·) = H(·/ξ1), and ψ̃(·) = ψ(·/ξ1) for some scalar ξ1 > 0, is observa-

tionally equivalent to the structure S in the sense that they both lead to the same joint

distribution of (C,B,B,D(1), D(2)).

Lemma 2 (Observational Equivalence) Suppose two structures S ≡ [F,H, ψ, α/(1+

λ), r] and S̃ ≡ [F̃ , H̃, ψ̃, α/(1 + λ), r] both satisfy Assumption 1, then S and S̃ are obser-

vationally equivalent.

Intuitively, the observational equivalence arises from the fact that both the cost func-

tion H(·) and its argument (type) θ are unobservables. A linear transformation θ̃ = ξ1θ of

the type θ together with an appropriate transformation of H(·) leads to the same realized

cost. Accordingly, we may adjust other model primitives to rationalize other observables

(B,B,D(1), D(2)).

We will normalize the lower bound θ of the type support, which turns out to be

sufficient to rule out observational equivalence scenario as described in Lemma 2 and the

upper bound θ will be identified whenever necessary.5 Consequently, [θ, θ̄] is divided into

three subintervals [θ, θl], [θl, θu] and [θu, θ̄], where an agent with type belonging to [θ, θl] or

5Perrigne and Vuong (2011, 2012) use similar normalizations in the nonparametric identification of a

static contract model with adverse selection and moral hazard.
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[θl, θu] would choose the FF contract or the CF contract, respectively, and an agent with

type belonging to the last subinterval would choose the CC contract. Since FP contracts

provide high incentives for cost-reducing effort and CR contracts have no incentive for

effort, these two types of contracts induce different equilibrium conditions on the optimal

effort. That is, the optimal effort with FP contracts depends on the agent’s type while

the optimal effort with CR contracts is always zero for any type of agent. Hence, our

identification strategy will be constructed in terms of FP contracts and CR contracts,

respectively.

3.1 Identification of optimal effort

The first challenge of identification concerns the unobserved optimal effort. Although

the static monopoly contract model in Perrigne and Vuong (2011) also involves the unob-

served effort, their identifying strategy does not apply to our model because other than

the observed cost, more observables (i.e., output and price) in their model are available,

which is helpful for identification. By contrast, the directly related data in our model

only consist of one observed continuous random cost variable and two binary choice vari-

ables. Acknowledging this difficulty, we adopt a newly developed method in measurement

error, i.e., Schennach and Hu (2013), to back out the distribution of the optimal effort

nonparametrically.

Assumption 2 There exist two measurements of effort E∗, X and Y , that satisfy:

X = E∗ + V1,

Y = m(E∗) + V2, (8)

where m(·) is an unknown function and E∗, V1, and V2 are mutually independent with

EV1 = EV2 = 0.

In Assumption 2, the first measurement X can be understood as a normalization of

the level of the unobserved optimal effort and the second measurement Y can be chosen

flexibly since m(·) can be a general function. This assumption is much less restrictive than

the existence of double measurements of a latent variable needed for the identification of

many structural models, e.g., in Li (2002), where m(·) must be an identity function.

The optimal effort or “hidden action” in contract theory is generally unverifiable, but

agent’s effort-related performance is oftentimes measurable which can thus be used as

measurements for the optimal effort. For example, Cicala (2015) discusses the plausibility

of employing cost-related variables to infer agent’s effort. In the empirical analysis of
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transportation procurement contracts in France, X and Y are chosen to be the share of

drivers among all the employees (employees consist of drivers and engineers) and the labor

fee, respectively.

Theorem 1 in Schennach and Hu (2013) show nonparametric identification of m(·)
and FE∗(·) are both nonparametrically from the joint distribution of X and Y except in

some special cases. These cases would impose little restrictions to our model, as discussed

in Appendix. In addition to Assumption 2, several additional regularity conditions are

required for the identification. Nevertheless, these conditions impose no further meaning-

ful restrictions to our model primitives. The main idea of the identifying strategy is to

investigate the higher-order moments (characteristic functions) for the joint distribution

of X and Y , which provides sufficient information to secure identification of the function

m(·) and distribution FE∗(·).
Recall that the optimal effort is increasing in agent’s innate cost 0 < e∗

′
(θ) < 1 for any

θ ∈ [θ, θu]. The inverse function theorem implies that the innate cost is a strictly increasing

function of the optimal effort with θ′(e∗) > 1. Consequently, the argument θ − e∗(θ) in

H(·) is strictly increasing in the optimal effort e∗ since d(θ− e∗)/de∗ = θ′(e∗)−1 > 0. Let

L(e∗) ≡ θ(e∗)− e∗. Then the observed cost for an agent who choose FF or CF contract,

c = H(θ(e∗)− e∗) can be rewritten as

c = H(L(e∗)) ≡ L̃(e∗),

with L̃′(·) = H ′(·)L′(·) > 0. A direct implication of this result is the existence of a one-

to-one mapping between the cost and the optimal effort, and the mapping enables us to

obtain the following important structural link:

FC(c) = Pr(L̃(e∗) ≤ c) = Pr(e∗ ≤ L̃−1(c)) = FE∗(L̃
−1(c)) = FE∗(e

∗), (9)

where FC(·) is the cumulative distribution function of cost C. The relationship above in

turn implies that

e∗ = F−1
E∗ (FC(c)), c ∈ [c, cu], (10)

where c ≡ H(θ − e∗(θ)) and cu ≡ H(θu − e∗(θu)). Therefore, observing the realized cost

c from any contract, we can recover the corresponding optimal effort e∗ as in (10) for

FP contracts, or as zero for CR contracts. We summarize this identification result in the

following proposition.

Proposition 2 Under Assumptions 1-2, the optimal effort e∗ associated with any given

realized cost c is identified.

11



3.2 Identification of cost function

The identification of H(·) relies on the recovered optimal effort e∗ and the structural

link between observed cost c and the cost function H(·) specified in (6).

c = H(θ − e∗(θ)).

In addition, our identification strategy requires an exclusion variable (denoted by W )

that is independent from agent’s type θ, yet affects the disutility from exerting any given

effort level e as ψ(e,W ). The variation of W causes quantiles of cost to change while

the corresponding quantiles of type are unchanged. This allows us to identify the cost

function. As we will show, a binary W would be sufficient to achieve identification.

Therefore, we assume W ∈ {$1, $2} without loss of generality. Recall that the optimal

effort e∗ of an agent who chooses FP contract is determined by the first-order-condition

H ′(θ−e∗) = ψ′(e∗), thus in general e∗ is a function of W . Consequently, the cutoff values θl

and θu also depend on W . For simplicity of exposition, we define ψj(·) ≡ ψ(·, $j), ψ
′
j(e) ≡

∂ψ(e,$j)/∂e, Cj(θ) = H(θ, e∗(θ,$j)), and ej(θ) = e∗(θ,$j) for j = 1, 2. Proposition 1

states that only the agent with type on [θ, θu] chooses FF or CF contracts (i.e. FP contract

at least once in the two periods), and the realized costs is on [c, cu]. When conditional on

W , we introduce the following notations: an agent with W = $j would choose FF or CF

contracts only if θ ∈ [θ, θju], with e∗ ∈ [ej(θ), e
j
u] and the resulting c ∈ [cj(θ), c

j
u], where

(θju, e
j
u, c

j
u) are the counterparts (θu, eu, cu) with W = $j for j = 1, 2.

Assumption 3 There exists an observable variable W such that: (i) θ is independent of

W . (ii) ψ(·) depends on W such that ψ1(e1(θ)) = ψ2(e2(θ)), ψ′1(e1(θ)) = ψ′2(e2(θ)), and

ψ′1(e) > ψ′2(e) for any e > max {e1(θ), e2(θ)}.

Assumption 3 requires the existence of an exclusion variable, such that the distribution

of the innate cost does not rely on this variable, but the disutility function does, which

captures the heterogeneity of the disutility across agents when cost-reducing effort is

exerted by agents who have the same innate productivity (type). The exclusion variableW

can be a component of the characteristics vector Z we introduced earlier. In our empirical

application of transport procurement contracts, a suitable choice of such a variable can

be a dummy variable indicating whether a firm is publicly or privately owned: the ex

ante managerial ability of firms does not depend on their ownership, while the disutility

of exerting cost-reducing effort may vary with firm’s ownership, which can be partly

explained by the firm’s internal structure (Gagnepain et al., 2013).

Part (ii) of Assumption 3 implies that e1 = e2 = e. This is due to the first order

12



condition (5) evaluated at θ :

H ′(θ − ej(θ)) = ψ′j(ej(θ)),

as well as the strict monotonicity of H ′(·). This property states that the most efficient

agent exerts the same (the minimum) level of effort, regardless his characteristics indicated

byW . Note that this assumption is empirically testable because e1(θ) = e2(θ) is equivalent

to c1(θ) = c2(θ), i.e., the lower bound of cost with w1 equals that with w2. Consequently,

the last condition in part (ii) reduces to ψ′1(e) > ψ′2(e) for any e > e. Part (ii) imposes

a single crossing condition on the relationship between W and the marginal disutility of

effort. The single or multiple crossing property plays a crucial role in economic theory,

and is widely used in the identification literature (e.g. Chesher (2003), Chernozhukov

and Hansen (2005), Heckman et al. (2010), Torgovitsky (2015)). Part (ii) of Assumption

3 can be relaxed: given that ψ′1 and ψ′2 across at least once (the intersection point is

not necessarily at the lower bound) on the support of effort, our identification result still

holds. We discuss the result as an extension later in this section.

Now we provide the key insights for identifying the cost function H(·). For those types

associated with effort exerted by the agent, we have

cj(θ) = H(θ − ej(θ)), θ ∈ [θ, θju], j = 1, 2, (11)

where the realized cost Cj is observable and the effort Ej is recovered in Proposition 2.

Considering that H(·) is strictly increasing, the equation above implies that

θ = H−1(cj(θ)) + ej(θ), θ ∈ [θ, θju], j = 1, 2. (12)

Denote by θ(τ), Ej(τ), and Cj(τ) the τ -th quantiles of θ, ej(θ), and cj(θ), respec-

tively. Our identification strategy is to exploit the condition that the distribution of θ is

independent of W to establish the link between e1(θ) and e2(θ) which correspond to a

same θ. Specifically, for a given quantile τ of θ, θ(τ), the corresponding quantiles of e1(·)
and e2(·) differ, and so do the quantiles for c1(·) and c2(·) (for more details, see the proof

of Proposition 3 in the Appendix.) And this is partly because θ1
u can be different from

θ2
u. Without loss of generality, we assume θ1

u < θ2
u ≡ θ∗, which is equivalent to a testable

statement that the lower bound of cost for CC contract under W = $1 is smaller than

that under W = $2. We further define

pj ≡ Pr(θ < θ < θju) ∈ (0, 1),

which measures the proportion of firms who choose FP contract at least in one period. It

follows from θ1
u < θ2

u that p1 < p2. It is easy to show that pj is directly identified as,

pj = Pr(θ < θ < θju) = E(D(1) +D(2)|W = $j). (13)
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For any given τ ∈ [0, p1] ⊂ [0, p2]. The one-to-one mappings from the type to the

optimal effort and from the type to the realized cost, both conditional on W , imply the

corresponding quantiles of ej(·) and cj(·) as

ej(θ(τ)) = Ej(τ/pj), cj(θ(τ)) = Cj(τ/pj), for j = 1, 2. (14)

Consequently, a quantile version of (12) can be written as

θ(τ) = H−1(C1(τ/p1)) + E1(τ/p1) = H−1(C2(τ/p2)) + E2(τ/p2),

or equivalently

H−1(C1(τ/p1)) = H−1(C2(τ/p2)) + ∆Ẽ(τ), (15)

where ∆Ẽ(τ) ≡ E2(τ/p2)−E1(τ/p1). As shown in the proof of Proposition 3, ∆Ẽ(τ) > 0.

Based on (15), we can establish the nonparametric identification of H(·). Specifically, for

any t ∈ [C1(0), C1(1)], it can be shown that

H−1(t) =

θ − e, for t = C1(0)

θ − e+
∑∞

k=0 ∆Ẽ(τk(t) · p1), for t ∈ (C1(0), C1(1)]
(16)

where {τk(t)}∞k=0 is a unique sequence of quantiles. The sequence is identifiable since

the distributions of C1 and C2 are identifiable. For a given τk, the term ∆Ẽ(τk · p1) =

e2(τk.p1/p2)− e1(τk) is also identifiable according to Proposition 2.

The unique sequence {τk(t)}∞k=0 is constructed as follows. Due to the the continuity

and the strictly increase of cost function, for any t ∈ (C1(0), C1(1)] there exists a unique

τ0(t) ∈ (0, 1] s.t. C1(τ0(t)) = t. This implies that t = C1(τ0(t)) > C2(τ0(t).p1/p2). Sim-

ilarly, there exists a unique τ1(t) ∈ (0, τ0(t)) such that C1(τ1(t)) = C2(τ0(t).p1/p2) and

C1(τ1(t)) > C2(τ1(t).p1/p2). Continuing such a procedure leads to a unique and strictly

decreasing sequence {τk(t)}∞k=0 that satisfies the nonlinear recursive relation C1(τk+1(t)) =

C2(τk(t).p1/p2) with the initial condition C1(τ0(t)) = t. Given the sequence of the quan-

tiles, our main identification equation (16) can be derived from (15) by iteration:

H−1(t) = H−1(C1(τ0(t)))

= H−1(C2(τ0(t).p1/p2)) + ∆Ẽ(τ0(t).p1)

= H−1(C1(τ1(t)) + ∆Ẽ(τ0(t).p1)

= H−1(C2(τ1(t).p1/p2)) + ∆Ẽ(τ1(t).p1) + ∆Ẽ(τ0(t).p1)

= · · ·
= H−1(C2(τm(t).p1/p2)) +

∑m

k=0
∆Ẽ(τk(t).p1). (17)
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Rearranging terms yields∑m

k=0
∆Ẽ(τk(t).p1) = H−1(t)−H−1(C2(τm(t).p1/p2)).

In the appendix, we show that {τk(t)}∞k=0 is decreasing sequence that converge to 0. Taking

limit on both side of the equation above yields∑∞

k=0
∆Ẽ(τk(t).p1) = H−1(t)−H−1(C2(0)),

where C2(0) is the lower bound of C2, whose corresponding argument of H(·) is θ − e.
This allows us to identify H−1(·) as

H−1(t) = θ − e+
∑∞

k=0
∆Ẽ(τk(t).p1).

We summarize the result of identification the following proposition.

Proposition 3 Under Assumptions 1-3, the cost function H(·) is nonparametrically iden-

tified on [θ − e, θ1
u − e1

u]. Equivalently, the inverse function H−1(·) is nonparametrically

identified on [c, c1
u].

To the best of our knowledge, study on identification of cost function in contract

models is very limited. Perrigne and Vuong (2012) show that the cost function is not

identifiable under a static monopoly contract setting. The proposition above complements

the existing literature with a positive identification result under a dynamic cost-based

contract setting. Our positive result is based on: (i) identification of effort distribution

following from recent development in measurement error literature, and (ii) the existence

of an exclusion variable W .

It is worth noting that nonparametric identification of H(·) on (θ1
u−e1

u, θ] is impossible.

This is because an agent with θ ∈ (θ1
u, θ] would choose only CR contract, which provides

little information on H(·). All we can learn from CR contract is c = H(θ) and the

corresponding e∗ = 0, while θ is unobserved.

Our identification results would still hold if Assumption 3 is replaced by a single

crossing condition: ψ′1 and ψ′2 cross exactly once at some point on the intersection set

of their interval supports. Under such a condition, the identification of the cost function

H(·) follows similar steps to the proof of Proposition 3. We summarize this alternative

assumption as follows.

Assumption 4 There exists some ec ∈ [e1, e
1
u] such that ψ

′
1(ec) = ψ

′
2(ec), ψ

′
1(e) > ψ

′
2(e)

for e > ec and ψ
′
1(e) < ψ

′
2(e) for e < ec, where e1 ≡ e1(θ).
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Corollary 1 Under Assumptions 1-2, 3(i) and 4, the cost function H(·) is identified on

the interval [max{θ − ej(θ)},min{θju − eju}], j = 1, 2.

The proof of Corollary 1 is similar to that of Proposition 3. The main difference of

identification in Corollary 1 is to first identify ec, the intersection point of the two cost

distributions under W = $1 and W = $2. Moreover, the identification result in Corollary

1 can be extended to the case with multiple crossing points because each intersecting point

can be identified by using the identification argument in Corollary 1.

3.3 Identification of type distribution and other parameters

The identification of H(·) on part of its domain can be utilized to identify the distri-

bution of innate cost θ on part of its support, which in turn is key to identify the ratio

α/(1 + λ), the disutility functions ψ(·) ≡ (ψ1(·), ψ2(·))′, and agent’s discount factor δ (or,

equivalently, the intertemporal preference r = 1/(1 + δ)).

The first step is to recover θ from its relationship with the realized cost C. The basic

idea is to use the one-to-one mapping between θ and C = H(θ − e(θ)). We have known

by now that

θ =


H−1(c) + F−1

E1
(FC1(c)), c ∈ [c, c1

u],

H−1(c), c ∈ (c1
u, c].

(18)

where FCj(·), for j = 1, 2, is the distribution of cost among FP contracts, conditional on

W = $j. And FEj(·) , for j = 1, 2, is the distribution of effort among FP contracts,

conditional on W = $j. Note that we can only recover the corresponding θ associated

with c ∈ [c, c1
u], which maps into θ ∈ [θ, θ1

u]. This is because H−1(·) is not identified for

c ∈ (c1
u, c]. Consequently, we can identify the distribution of θ conditional on θ ∈ [θ, θ1

u].

Specifically, denote by G(·) and g(·) the truncated CDF and pdf of θ on [θ, θ1
u]. We can

identify G(·) and g(·) according to recovered θ ∈ [θ, θ1
u]. Similar identification approaches

have been widely used to identify structural models, e.g., in Guerre et al. (2000) the

distribution of bidders’ valuations is recovered from observed bids using a similar method.

Notice that g(·) is not the same as f(·), the full pdf of θ, on [θ, θ1
u], but a rescaled version

of it, as follows

g(θ) =


f(θ)
F (θ1u)

, if θ ∈ [θ, θ1
u],

0, otherwise,

(19)
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where F (θ1
u) = Pr(θ ≤ θ ≤ θ1

u) is the probability that an agent chooses FF or CF

contracts, and is identifiable via

F (θ1
u) = E(D(1) +D(2)).

As a result, the pdf and CDF of θ is identified on [θ, θ1
u] as

f(θ) = g(θ)E(D(1) +D(2)),

F (θ) = G(θ)E(D(1) +D(2)),∀θ ∈ [θ, θ1
u]. (20)

Next, we turn to the identification of the disutility functions of effort {ψ1(·), ψ2(·)}.
Note that a direct implication from (10) and Proposition 2 is that, conditional on W = $j

for j = 1, 2, the optimal effort corresponding to any realized cost c ∈ [c, c1
u] is identifible

as

e∗j = F−1
Ej

(FCj(c)), c ∈ [c, c1
u].

By combining this relationship with (18), we obtain a one-to-one mapping between the

optimal effort e∗j and agent’s type θ, for all θ ∈ [θ, θju], again conditional on W = $j. This

mapping enables us to identify the derivative of disutility functions ψ′j(·), j = 1, 2, from

the first-order-condition of agent who exerts effort, i.e., ψ′j(ej(θ)) = H ′(θ − ej(θ)) for all

θ ∈ [θ, θ1
u] ⊂ [θ, θ2

u] . An initial condition for this differential equation can be obtained

from (7)

ψj(e
j
u) = b̄−H(θju − eju) = b̄− cju.

Thus the solution for ψj(·) is

ψj(e) = b̄− cju −
∫ eju

e

H ′(ej
−1(v)− v)dv, e ∈ [e, eju]. (21)

Lastly, we focus on identifying the ratio α/(1 + λ) which describes the relative weight

the principal puts on agent’s informational rent (profit) and social cost of public funds,

and agent’s discount factors δ, or equivalently intertemporal preference (weight) r with

r = 1/(1 + δ). Since the principal’s optimization problem involves both types of agent

which are induced to choose fixed-price and cost-reimbursement contracts, identification of

the ratio requires information from all types of agent. We utilize the first-order-condition

of the principal’s problem (7) for identification. Note that H ′(θ1
u − e1

u), f(θ1
u) and F (θ1

u)

on the right-hand-side are identified, it remains to to recover F (θ1
l ) and H(θ1

u). First off,

F (θ1
l ) = Pr(θ ≤ θ ≤ θ1

l ) = E(D(1)|W = $1)

is just the probability that an agent chooses FF contract, thus F (θ1
u)−F (θ1

l ) = E(D(2)|$1).

Our analysis of the theoretical model in Section 2 shows that an agent with innate cost θ1
u
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is indifferent between FP and CR contracts because both choices lead to zero profit. If an

agent chooses the CR contract, H(θ1
u)−cR = 0, where cR is the lower bound of the realized

costs associated with CR contracts. Thus we can identify H(θ1
u) as cR. Combining all the

pieces above, we identify the ratio α/(1 + λ) as

α

1 + λ
= 1− cR − b̄

H ′(θ1
u − e1

u)

f(θ1
u)

E(D(2)|$1)
. (22)

Moreover, agent’s discount factor δ is identified using the optimal condition (7)

δ =
b−H(θ1

l − e1
l )− ψ1(e1

l )

b̄− b
, (23)

where θ1
l is identified as θ1

l = F−1(E(D(1)|$1)). The discount factor is a crucial objective

to study agent’s behavior and consequently conduct counterfactual or policy analyses.

However, the discount factor oftentimes can not be identified in dynamic models. For

example, Magnac and Thesmar (2002) show that decision makers’ discount factor in

dynamic discrete choice models can not be identified.

Theorem 1 Let Assumptions 1-3 hold. Then the principal’s relative ratio α/(1 + λ)

and agent’s discount factor δ are identified. The distribution of agent’s innate cost F (·),

disutility function ψ(·) = (ψ1(·), ψ2(·))′, and cost function H(·) are nonparametrically

identified on [θ, θ1
u], [e, e1

u] and [θ − e, θ1
u − e1

u], respectively.

The insight of identification in Theorem 1 naturally carries over to the one-period

or static contract, since the equilibrium outcomes in the one-period setting is similar

to that in the two-period contracts with renegotiation in the sense of providing similar

information for identification. Thus the cost type distribution F (·), disutility function ψ(·)
and cost function H(·) are nonparametrically identified on intervals corresponding to types

associated with the choices of FP contracts in the static contract. Moreover, Theorem

1 also applies to the two-period contracts with commitment because the equilibrium

outcome in the two-period contracts with commitment is just the twice-repeated version

of that in the one-period (static) setting, as proved in Laffont and Tirole (1990).

Theorem 1 shows that the two-period FPCR model is nonparametrically identified

for types associated with positive effort in at least one period. The results could be

extended to a more general class of contracts: linear cost sharing-cost reimbursement

(LCSCR) contracts where the fixed-price contract is replaced by a linear cost-sharing

(LCS) contract. In a LCS contract, the payment is specified as a lump-sum payment q0

plus a single fraction κ ∈ [0, 1] of realized cost for which the agent would be reimbursed.

qt = q0 + κct, κ ∈ [0, 1]. (24)
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Such a payment schedule is widely studied in the literature (e.g., Chu and Sappington,

2007) and nests the FPCR contract we analyzed as a special case with κ = 0 from the

perspective of functional forms. Our procedure of identification could apply because linear

cost sharing (LCS) contracts provide additional variation of payments by comparing with

FP contracts where the payment is a constant and independent of cost.

Note that the upper bound of type’s support, θ, is not required to obtain the results

in Theorem 1. In actuality, the upper bound cannot be identified because it relies on the

information of CR contracts. We show in the next section that parametrizing the cost

function H(·) enables us to achieve identification of model primitives on their full support.

3.4 Semiparametric Identification

So far we have identified almost all model primitives nonparametrically, except H(·)
on (θ1

u − e1
u, θ], and Fθ(·) on (θ1

u, θ]. Here we focus on the former, whose identification is

the key to identify the latter. As previously discussed in the paper, H(·) is unidentified

on (θ1
u − e1

u, θ] due to a severe lack of identifying information from CC contracts. Our

identification strategy for H(·) on (θ1
u−e1

u, θ] is to develop additional regularity conditions

which guarantee a unique extrapolation of H(·) from the already identified region [θ −
e, θ1

u − e1
u] to (θ1

u − e1
u, θ].

We regulate H(·) by parameterizing it. We assume that H(·) admits the parametric

form H(·; β) on its entire domain [θ − e, θ], for a finite dimensional parameter β ∈ RKβ .

Parameterizing the cost functions is a widely adopted procedure in the related literature.

For example, Luo et al. (2018) parameterize the cost function to identify the truncated

distribution of consumers’ types. In our study, after parameterization, β is characterized

by (16) as

H−1(t; β) = θ − e+
∑∞

k=0
∆Ẽ(τk(t) · p1). (25)

Note that the equation above holds for any given t ∈ [θ−e, θ1
u−e1

u], which provides strong

identifying power. In many cases, if we parameterize H(·; β) carefully to avoid any trivial

non-identification6, then identification of β, or equivalently parametric identification of

H(·) on [θ − e, θ], can be achieved.

Alternatively, we may identify β ∈ RKβ via the key relationship (15), which, under

6Here, the term “trivial non-identification” refers to non-identification due to careless specification

of parameters, which can be easily avoided. For example, if H(·) is parameterized as H(t;β1, β2) ≡
(β1 + β2)[t − (θ − e)]2 + c, then obviously (β1, β2) is unidentified. But the non-identification in this

example can be easily avoid if we parameterize H(·) as H(t;β) ≡ β[t− (θ − e)]2 + c.

19



the parametric form, is as follows

H−1(C1(al); β) = H−1(C2(al ·
p1

p2

); β) + E2(al ·
p1

p2

)− E1(al), (26)

for a preselected sequence of constants {a1, a2, ..., aL} ⊂ (0, 1), together with the ini-

tial condition H−1(c) = θ − e. Roughly speaking, β is identified when L large enough.

(Typically, L ≥ Kβ is a minimum requirement, but dose not necessarily guarantee identi-

fication.) But detailed conditions for identification of nonlinear models (i.e. uniqueness of

solution to a system of nonlinear equations, such as (26)) can be case dependent, and are

generally complicated. Yet, for a special case when H(·) is specified to take a quadratic

form, which we adopt in our empirical study, identification of β is straightforward based

on (26). Note that once β is identified, we can recover the upper bound of type, θ as

H−1(c̄R; β) with c̄R being the upper bound of realized costs among all CR contracts.

Once H(·) is identified on [θ−e, θ], identification of Fθ(·) on its entire domains follows

from (18). We summarize the identification results under parameterization of H(·) in the

following theorem. Although H(·) is only parametrically identification, other unknown

functions Fθ(·) and ψ(·) are still nonparametrically identified, in the sense of which these

can be viewed as semiparametric identification results.

Theorem 2 Suppose Assumptions 1-3 hold and β is identified. Then α/(1+λ) and δ are

identified. Moreover, F (·) and ψ(·) are nonparametrically identified on [θ, θ̄] and [e, e1
u],

respectively.

4 Estimation

In this section, we discuss estimation of the cost function H(·), the distribution of

innate cost θ, the ratio α/(1 + λ), and other model primitives. We provide a three-

step semiparametric estimation scheme that follows our identification strategy closely.

Firstly we estimate the distribution functions of the observed cost and latent effort level,

respectively. Secondly we estimate H(·) as a plug-in estimator, relying on a sequence

of quantiles estimated based on the estimated distribution functions from the first step.

Finally, we estimate the distribution of θ and the ratio α/(1 + λ). Here, we focus on the

case of binary W ∈ {$1, $2}, which we prioritize throughout the paper.

Recall that the cost and disutility function, and the distribution of innate cost are all

dependent on the covariates Z. To avoid “curse of dimensionality”, it may be necessary

to incorporate Z into our estimation parametrically instead of just conditioning on it.

Nevertheless, modeling Z is application-specific and we will discuss the details in our
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empirical illustration. In this section, we will present our estimation procedure conditional

on Z = z for a given z for simplicity.

The sample {ci, wi, d(1)
i , d

(2)
i , xi, yi}ni=1 is from observations on n two-period contracts,

and is assumed to be i.i.d.. Among the n contracts, nf of them are under a fixed price for

at least one period (i.e. d
(1)
i + d

(2)
i = 1). Moreover, among the nf fixed price contracts,

nf,1 of them are with wi = $1, and nf,2 of them are with wi = $2. They form two

subsamples {c1i, d
(1)
1i , d

(2)
1i , x1i, y1i}

nf,1
i=1 and {c2i, d

(1)
2i , d

(2)
2i , x2i, y2i}

nf,2
i=1 , which turn out to be

important for estimation.

Step 1: Estimation of Cost and Effort Distributions

The first step is to estimate the conditional distributions of cost C and optimal effort

E∗ given W .7 For a binary W , this means to estimate the distributions of C and E∗

with each of the two subsamples {c1i, d
(1)
1i , d

(2)
1i , x1i, y1i}

nf,1
i=1 and {c2i, d

(1)
2i , d

(2)
2i , x2i, y2i}

nf,2
i=1 .

Specifically, the density of E∗ conditional on W = $j, denoted by fEj for j = 1, 2, is

estimated along with some nuisance parameters by a sieve maximum likelihood estimator

(SMLE) proposed in Shen (1997) as follows

(m̂, f̂Ej , f̂V1 , f̂V2) = arg max sup
(m,FEj ,fV1 ,fV2 )

nf,j∑
i=1

ln

∫
fV1(Y1i − t)fV2(Y2i −m(t))fEj(t)dt,

(27)

where the max and sup are taken over suitably restricted sets of functions; fV1(·) and

fV2(·), respectively, denote the densities of error terms V1 and V2. The optimization is

subject to some restrictions which consist of constraints that the densities integrate to one

and zero-mean constraints on the error densities fV1(·) and fV2(·). All unknown functions

fV1(·), fV2(·), and fEj(·) are chosen in an appropriate sieve space constructed by truncated

series such as Hermite orthogonal series with the number of terms in the series increasing

with the sample size. More details about the implementation and properties of the sieve

estimators can be found in Shen (1997), Ai and Chen (2003), Chen (2007), Carroll et al.

(2010), and Chen et al. (2014). Depending on the parameters of interest, the unknown

densities fV1(·), fV2(·), and fEj(·) can also be set semiparametrically or fully parametric.

Unlike the optimal effort E∗, the realized cost C is observed. Therefore, the CDF of

the realized cost conditional on the exclusion variable $j, denoted by FCj(·) for j = 1, 2,

can be more straightforwardly estimated by empirical distribution, kernel estimator, or

some sieve estimator.

7Note that both the observable realized cost C and unobservable (optimal) effort E∗ are dependent

on the exclusion variable W .
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Step 2: Estimation of the Cost Function

Due to the lack of nonparametric identification on its whole domain, we aim at para-

metric estimation of the cost function H(·). We note that non/semi-parametric estimation

of H(·) on [θ− e, θ1
u− e1

u] is possible, following from Proposition 3. This might be of prac-

tical interest, and is left for future research.

H(·) is parametrized as H(·; β) for a finite dimensional parameter β ∈ RKβ . For a

preselected sequence of grid points {al}Ll=1 ⊂ (0, 1), β is estimated as

β̂ = argmin
β:H(θ−e;β)=c

L∑
l=1

[
H−1(Ĉ2(al ·

p̂1

p̂2

); β)−H−1(Ĉ1(al); β) + Ê2(al ·
p̂1

p̂2

)− Ê1(al)

]2

, (28)

where for j = 1, 2

p̂j =
1

nf,j

nf,j∑
i=1

[d
(1)
ji + d

(2)
ji ]. (29)

Ĉj(τ) and Êj(τ) are the τ -th quantiles of C and E∗ conditional on W = $j and they are

estimated according to F̂Cj and F̂Ej from the first step, respectively. H−1(·; β) represents

the inverse function of H(·) corresponding to the parametrization H(·; β). Consequently,

H(·) and H−1(·) are estimated as

Ĥ(·) = H(·; β̂) and Ĥ−1(·) = H−1(·; β̂),

respectively.

For a special case, when H(·) is parametrized as a quadratic function, we can incor-

porate the initial condition H(θ − e) = c directly into the parametrization, which yields

H(t; β) = β2[t− (θ − e)]2 + β1[t− (θ − e)] + c.

And it is easy to solve for the explicit form of H−1(·; β) as

H−1(c; β) = θ − e+
−β1 +

√
β2

1 + 4β2(c− c)
2β2

.

In more general cases, an explicit form of the (real-valued) inverse function of H(·; β) may

be very complicated, or may not even exist. For these cases, we suggest to parametrize

H−1(·) (rather than H(·)) directly, and estimate it according to (28). After all, an esti-

mated H−1(·) is needed in the next step. Afterwards, H(·) can be estimated via certain

extrapolation procedure based on Ĥ−1(·).
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Step 3: Estimation of θ, α/(1 + λ), and Other Primitives

Based on the results from the two steps above, we can calculate a fitted value for θi as

θ̂i =


Ĥ−1(ci) +

∑
j=1,2 1(wi = $j) · F̂−1

Ej
(F̂Cj(ci)), for FP contracts,

Ĥ−1(ci), for CR contracts.

(30)

Then the CDF for θ is estimated as the empirical distribution based on the sample of

fitted values {θ̂i}ni=1,

F̂ (t) =
1

n

n∑
i=1

1(θ̂i ≤ t). (31)

And the pdf f(·) can be estimated as a kernel estimator calculated from {θ̂i}ni=1.

Estimation of α/(1 + λ) is based on (22)

α

1 + λ
= 1− cR − b̄

H ′(θ1
u − e1

u)

f(θ1
u)

E(D(2)|$1)
.

Specifically, since F (θ1
u) = E(D(1) +D(2)|W = $1), θ1

u can be estimated as

θ̂1
u = F̂−1

(∑n
i=1 1(wi = $1) · (d(1)

i + d
(2)
i )∑n

i=1 1(wi = $1)

)
. (32)

Consequently α/(1 + λ) is estimated as

̂α/(1 + λ) = 1− cR − b̄
H ′(θ̂1

u − ê1
u; β̂)

f̂θ(θ̂
1
u) ·
∑n

i=1 1(wi = $1)∑n
i=1 1(wi = $1) · d(2)

i

. (33)

Estimation of ψj(·), for j = 1, 2, is based on the integration equation (21) and the

fact that there is a one-to-one increasing mapping ej(θ) = F−1
Ej

(F (θ)/F (θlu) from [θ, θju]

to [e, eju]. For any e ∈ [e, e1
u], ψj(e) is estimated as

ψ̂j(e) = b̄− cju −
∫ êju

e

H ′
(
F̂−1(F̂Ej(v) · F̂ (θju))− v; β̂

)
dv, (34)

where F̂ (θju) can be calculated as

F̂ (θju) =

∑n
i=1 1(wi = $j) · (d(1)

i + d
(2)
i )∑n

i=1 1(wi = $j)
. (35)
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Finally, the discount factors δj, for j = 1, 2, are estimated based on (23), as follows

δ̂ =
b−H(θ̂1

l − ê1
l ; β̂)− ψ1(ê1

l )

b̄− b
, (36)

where

θ̂1
l = F̂−1

(∑n
i=1 1(wi = $1) · d(1)

i∑n
i=1 1(wi = $1)

)
(37)

and ê1
l = F̂−1

E1

(
F̂C1(c

1
l )
)

.

The estimators above are all consistent under regularity conditions. We formalize the

consistency result in the following proposition.

Proposition 4 Suppose Assumptions 1-3 hold. In addition, we assume: (i) H(t; β) is

continuous in both t ∈ (θ − e, θ) and β ∈ B, with B being compact, (ii) β is identified

via (26), and (iii) {p̂1, p̂2, Ĉ1(al), Ĉ2(al · p1p2 ), Ê1(al), Ê2(al · p1p2 )}Ll=1 are consistent. Then β̂,

{θ̂i}ni=1, F̂θ(·), ̂α/(1 + λ), ψ̂(·), and δ̂ are all consistent.

5 Empirical Illustration

In this section we apply our method to analyze transport procurement contracts. In

France a local authority (principal) contracts with a single operator (agent) to provide the

transport service by using fixed-price contracts or cost-reimbursement contracts. Gagne-

pain and Ivaldi (2002) confirmed through a test that adverse selection (on private innate

cost of operators) and moral hazard (due to unobserved cost-reducing effort exerted by

operators) are two important features of the industry. Regulatory rules require that these

contracts must be renegotiated every five years between the two parties. Thus the dataset

is particularly suitable for our model.

The main goal of our application is to evaluate the influence of different properties of

cost-reducing effort on the social welfare. To do so, we estimate the structural parameters

of the model by following the semiparametric estimation procedure proposed in Section

4, and then calculate the social welfare under monotone optimal effort and constant

optimal effort, respectively. As shown earlier, the monotone optimal effort implied by

convex cost functions means that the optimal effort is increasing in the innate cost, while

the constant optimal effort implied by a linear cost function means that the optimal

effort is independent of the innate cost. The latter property of optimal effort is widely

involved in the related theoretical literature including Laffont and Tirole (1988, 1990),

24



Rogerson (2003), Chu and Sappington (2007), Battaglini (2007), and Garrett (2014).

The empirical evidence, however, suggests that the optimal effort is increasing in their

innate costs, such as in the transport industry in France by Gagnepain and Ivaldi (2002)

and electricity industry in the U.S. by Abito (2014). Hence, we aim to evaluate whether

the social welfare of FPCR contracts under monotone optimal efforts significantly differs

from that under constant optimal effort. This investigation is important both in theory

and in practice.

Our empirical findings show that the cost function is significantly convex, thus imply-

ing the monotone optimal effort. The counterfactual results indicate that the difference of

social welfare between monotone effort and constant effort is large, thus providing strong

empirical evidence that (1) the theoretical literature should be cautious when specifying

the cost function in simple contracts, and that (2) the performance of simple contracts

varies with the property of optimal effort, which is determined by cost specifications.

5.1 Data

The dataset includes 543 two-period contracts implemented from 1987 to 2001. Among

these contracts, 281 observations are two-period fixed-price contracts (FF), 88 observa-

tions are CR contract in the first period followed by one FP contract in the second period

(CF), and the remaining 174 ones are a two-period CR contracts (CC). The dataset re-

ports the type of contract, the realized cost for each contract, and the subsidy for each

FP contract (i.e., the fixed prices paid from the principal to the agent). In addition, it

provides some characteristics of operators/contracts, including the labor fee, the number

of employees, the number of drivers, the size rolling stock (measured by the number of

vehicles), and the ownership of operators.

Table 1 provides a summary statistics of the dataset. On average the cost is about

17 million euros and the subsidy is approximately 19 million per contract, which implies

that on average the operators are profitable. The average labor fee is 10.7 million and

accounts for 64 percent of the total cost, suggesting that reducing the labor fee is critical

to increase the operator’s profit. The average numbers of employees and drivers are 413

and 278, respectively. That is, on average more than one half of the employees are drivers,

implying the intensive labor of transport industry. As the ownership indicates, one half

of the operators is privately owned and another half is publicly owned.
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Table 1: Summary Statistics

Variables Mean Std. Dev. Min Median Max

# of Contracts 543

# of FF 281

# of CF 88

# of CC 174

Cost 16860 15954 2397 10347 93993

Subsidy 18794 18236 2265 12039 114483

Number of employees 413 364 68 267 1772

Number of drivers 278 216 47 144 1182

Labor fee 10740 10241 716 6650 53178

Rolling stock 165 121 33 84 724

Private owenship 0.52 0.50 0.00 1.00 1.00

All variables are real terms. The units of cost, subsidy and labor fee are 1000 euros.

5.2 Empirical strategies

The estimation strategy follows our semiparametric estimation procedure by choosing

the two measurements (X, Y ) and the exclusion variable W . One plausible variable for

the measurement of effort X is the share of drivers among all the employees (employees

consist of drivers and engineers) because the share of engineers provides a measure for the

endowment of skills embodied in the operator. As Gagnepain et al. (2013) argue, engineers

are generally responsible for research and development, quality control, maintenance, and

efficiency. Since the optimal effort is positively related to the innate cost, we expect

that the share of drivers in the total labor force to be positively related to the optimal

effort. A natural choice for the second measurement of Y is the labor fee because labor

fee represents 64 percent of the total cost, which can be interpreted as a function of the

optimal effort due to the one-to-one mapping between the optimal effort and the innate

cost. As Cicala (2015) suggests, one can employ cost-related variables to infer agent’s

effort.

Our choice of W is a dummy variable indicating the ownership of the operator, i.e.,

whether the operator is privately owned or not. Among the four operators in the dataset,

three operators are privately owned (W = $1) while only Transdev is not privately owned

(W = $2). As the empirical evidence in Gagnepain et al. (2013) shows, Transdev enjoys

a less costly effort technology than other three private operators, which could be related

to the operator’s internal structure. Thus, we expect that Transdev takes a different
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disutility function of effort from other three operators. In addition, the covariate Z is

taken as the number of vehicle in the operator’s rolling stock. Recall that the operator’s

bargaining power α and the cost of public funds λ are not separately identified since only

the ratio α/(1 + λ) appears at the equilibrium conditions in (7). The empirical studies

suggest that λ is in the interval [0.15, 0.40] in an efficient tax systems (Ballard et al.,

1985). We choose λ = 0.3 as in Gagnepain et al. (2013).

Because of the relative small sample size, we deviate slightly from the procedure in

Section 4 to estimate model primitives. Specifically, we parametrize both the cost and

the disutility function,

H(θ − e) = β1(θ − e) + β2(θ − e)2,

ψj(e) = γj1e+ γj2e
2, j = 1, 2. (38)

The dependence of θ on the covariate Z is modeled as

θ = θ0 + λθZ,

where θ0 is a random variable. This specification above implies an additively separable

form of the optimal effort (we drop the subscript j for ease of exposition)

e = e0 + λeZ,

where e0 and λe can be expressed as function of parameters of H(·), ψj(·) and θ(·).

e0 = e0(θ0; β1, β2, λ1, λ2); λe = λe(β1, β2, λ1, λ2, λθ). (39)

The decomposition above allows us to write the distribution of e conditional on Z as

fE|z(e|z) = fE0(e − λez), with fE0(·) being the density of E0. Furthermore, the function

m(·) is parametrized as follows.

m(E; ζ) = ζ1E + ζ2E
2. (40)

In the first step of estimation, where β1, β2, ζ1, and ζ2 are estimated using (28), we use

the Hermite orthogonal series qn(x) as our sieve basis functions.

qn(x) =

√
1√
πn !2n

Hn(x)e−
x2

2 ,

where H0(x) = 1, H1(x) = 2x, and Hn+1(x) = 2xHn(x)− 2nHn−1(x). The densities fV1 ,

fV2 and fEj0
, j = 1, 2 are expended by the sieve basis as:

fEj0
(x) =

(∑kj

i=0
ρiqi(x)

)2

, fV1(x) =
(∑m1

i=0
δiqi(x)

)2

, fV2(x) =
(∑m2

i=0
πiqi(x)

)2

,
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where kj,mj, j = 1, 2 are smoothing parameters. In our estimation, we choose k1 = k2 =

m1 = m2 = 3.

The objective pj, j = 1, 2 also depends on Z and we estimate it using the standard

kernel estimation. The parametrized disutility function ψj(·) is estimated by a minimum

distance estimator based on the first-order-condition H ′(θ−ej) = ψ′j(ej), which is different

from Section 4. The parameters α and δ (or equivalently r) are estimated using (33) and

(36), respectively.

5.3 Estimation results

In Figure 1, we present estimates of densities fEj0
(·), together with their point-wise

confidence intervals.8 The estimates illustrate the distribution of optimal effort differs

slightly across two types of firms. The average optimal effort for public firms is smaller

that for private ones, and this result implies that public firms have less incentives. This

observation is consistent with the existence of the exclusion variable W : some firms have

larger marginal disutility than others and as a result the former types of firm exert less

effort.

We present our estimation results in Table 2. The result indicates that the second

measurement of optimal effort, i.e., the function m(·) is significantly convex in the optimal

effort for the privately owned operators. The cost function H(·) is significantly convex

in the operator’s innate cost, thus providing strong empirical evidence against the linear

cost function assumed in the related literature. An important implication of the convex

cost function is that operators enjoy increasing returns to scale in the cost it induces,

which provides less efficient operators with incentives to exert more effort. Furthermore,

the convexity of cost is consistent with the convexity of the second measurement of the

optimal effort for the privately owned operators since the labor fee, which is the the second

measurement of the optimal effort, accounts for more than one half of the total cost.

The disutility functions ψj(·) are both significantly linear, thus implying that the

marginal disutility of exerting cost-reducing effort is constant across different levels of

effort. Focusing only on γ1, the estimates are consistent with our assumption that the

marginal disutility for public firms (W = $2) is larger. The innate cost is decreasing

in the operator’s rolling stock (captured by the parameter λθ), which suggests that the

efficiency (productivity) of the operator is increasing in the operator’s size represented by

the rolling stock. The intertemporal weight r is 0.038, impling that operators pay most

attention to the profit of the second-period. The operator’s bargaining power is 1.299, as

8Recall that e = e0 + λeZ. e0 can be negative even though we require e ≥ 0.
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Table 2: Estimation results of model parameters

Functions/Parameters Variables Private(W = $1) Public (W = $2)

Measurement Y Effort (ζ1) 11.374*** 7.493

(3.870) (6.417)

Effort × Effort (ζ2) 11.879*** 7.740

(3.218) (8.253)

Cost Ineff. (β1) 0.430

(64.706)

Ineff. × Ineff. (β2) 25832.4*

(13969.0)

Disutility Effort (γ1) 35909.0*** 40063.3***

(12787.0) (13815.4)

Effort × Effort (γ2) 1778.441 1682.441

(1261.966) (8113.650)

Innate cost Rolling stock (λθ) -0.0004***

(0.0001)

Intertemporal weight (r) 0.038

(0.174)

Bargaining power (α) 1.299***

(0.026)

Sample size 369

Standard errors in parentheses are bootstrapped 1000 times. *p < 0.10, **p < 0.05,

***p < 0.01.

We estimate parameters λθ, r and α conditional on W = $1 and W = $2 separately,

then take the average.
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Figure 1: Densities of optimal effort
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is required by the theoretical restriction that α < 1 + λ.9

5.4 Counterfactuals

In this section we assess the social welfare that would be achieved if the optimal

effort were constant implied by a linear cost specification, which is widely assumed in the

literature, and make comparisons of social welfare between constant optimal effort and

monotone optimal effort.

The cost function is often specified as a linear function in many existing literature,

H(θ − e) = β(θ − e).

A consequence of the specification above is that the optimal effort is independent of the

innate cost θ. This is implied by the first order condition

H ′ = β = ψ′(e∗).

9The parameters λθ, r and α are first estimated based on W = $1 and W = $2 separately, then we

take the average as our estimates.
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Table 3: Counterfactual results

Parameters Cost Intertemporal weight Bargaining power

Est. 23465.4*** 0.506*** 0.571

(5177.8) (0.115) (0.388)

Standard errors in parentheses are bootstrapped 1000 times.

* p < 0.10, ** p < 0.05, *** p < 0.01

That is, the optimal effort is constant for any type of the agent associated with FP

contracts. Since the optimal effort has no variation, the disutility function ψ(·) can not

be identified. Therefore, we normalize the disutility function to be

ψ(e) = e2,

which satisfies Assumption 1.10 The details on semiparametric identification and construc-

tive estimation of the model with constant optimal effort are provided in the Appendix.

The estimation results under the specification of linear cost function are presented in

Table 3. As the estimation results show, the cost is significantly linear in innate cost, which

is different from the prior empirical result where the cost is not significant in the linear

term of innate cost. Given the significant convexity of cost in Table 2, the widely used

linear cost function bears high risk of mis-specification, which may result in misleading

conclusions. The intertemporal weight is 0.506, which suggests that the operator pays

equal attention to the profit of both periods, while Table 2 implies that the operator pays

most attention to the profit of the second period. The bargaining power is 0.517, which

is only one half of the bargaining power in Table 2. Now we calculate and compare the

social welfare under both monotone optimal effort and constant optimal effort. Let SWM

and SWC denote the social welfare of the contracts under monotone optimal effort and

constant optimal effort, respectively.11

SWM(z) = S − (1 + λ)TM(z) + αMUM(z),

SWC(z) = S − (1 + λ)TC(z) + αCUC(z), (41)

where TM(z) and TC(z) are subsidy (tax) under monotone optimal effort and constant

optimal effort, respectively, UM(z) and UC(z) are their informational rent (profit) coun-

terparts, and αM and αC are their respective bargaining powers.

10We also conduct counterfactuals with different normalizations of ψ(·) by choosing different values of

χ > 0 in the general form ψ(e) = χe2, which is widely used in the related theoretical literature such as

Laffont and Tirole (1988), Rogerson (2003), Chu and Sappington (2007), and Battaglini (2007).
11The social welfare SWM depends on the exclusion variable W ∈ {$1, $2}. We take the average of

the social welfare under $1 and $2 in the counterfactual analysis.
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The definition of these objectives are as follows. The tax under monotone optimal

efforts is defined as

TM(z) = bFθ|z(θ
∗
1(z)|z) +

∫ θ∗2(z)

θ∗1(z)

[rMH(θ) + (1− rM)b̄]dFθ|z(θ|z) +

∫ ∞
θ∗2(z)

H(θ)dFθ|z(θ|z),

and TC(z) is defined similarly. The utility under monotone optimal efforts is defined as

UM(z) =

∫ θ∗1(z)

−∞
[b−H(θ − e(θ))− ψ(e(θ))]dFθ|z(θ|z)

+ (1− rM)

∫ θ∗2(z)

θ∗1(z)

[b−H(θ − e(θ))− ψ(e(θ))]dFθ|z(θ|z),

and UC(z) is defined similarly except that the optimal effort e(θ) is replaced by the

constant optimal effort e∗. Consequently, the welfare difference is

∆SW (z) ≡ SWC(z)− SWM(z) =
[
αCUC(z)− αMUM(z)

]
− (1 + λ)

[
TC(z)− TM(z)

]
,

where the first term on the right side is the difference of bargaining power-weighted infor-

mational rent, and the second term is the difference of social cost. By integrating out the

covariates z, we obtain the average social welfare difference ∆SW =
∫
z∈Z ∆SW (z)dG(z)

by plugging their corresponding estimates of parameters into their definitions, where G(·)
is the cdf of Z.12

Table 4: Welfare Differentials for the average network

Welfare items Model Estimate

Social cost Monotone (1 + λ)TM 23.4

Constant (1 + λ)TC 25.1

Differential (1 + λ)(TC − TM) 1.7

Weighted

informational rent

Monotone αMUM 23.2

Constant αCUC 10.3

Differential αMUM − αCUC 12.9

Welfare differential ∆SW (αMUM − αCUC)− (1 + λ)(TC − TM) 14.6

All estimates are in million euros.

12We restrict the sample to FP contracts (including FF choices and CF choices) because a fixed-price

is unobserved for CC contracts.
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Based on Table 4, the difference of social welfare between monotone effort and constant

effort is 14.6 million euros. The large difference is mainly due to the difference of weighted

informational rent 12.9 million euros (56 percent), and the difference of social cost is only

1.7 million euros (7 percent). The substantial difference of social welfare is reminiscent of

An and Zhang (2018) who prove that in a static (one-period) FPCR contract, the social

welfare of FPCR contract under monotone optimal efforts may differ substantially from

that under constant optimal effort, and the magnitude of difference relies crucially on

the magnitude of monotonicity of the optimal effort. Intuitively, under the linear cost

function an operator has no incentive to exert more effort than others regardless of what

its innate cost is. Nevertheless, when the cost function is convex, an operator with a

higher innate cost enjoys a larger reduction of cost than a lower-innate cost operator by

exerting the same effort. This may explain the result that the weighted informational

rent under monotone effort is much larger than that under constant effort. The smaller

difference of social cost is due to the comparability of the estimates of cost functions in

terms of inducing similar costs.

These findings suggest that it is crucial to take into account the monotonicity of

optimal effort, which is determined by the functional form of agent’s cost function, when

we evaluate the performance of FPCR menus.

6 Conclusion

We provided a rigorous econometric framework to analyze two-period FPCR contracts

with renegotiation. We proved that the model is nonparametrically identified on intervals

corresponding to FF and CF contracts. Further we provided semi-nonparametric identi-

fication results on intervals corresponding to CC contracts. Our identification results are

applicable to a large class of simple contracts. Based on the identification strategy, we

proposed a semiparametric procedure to estimate the model primitives. In the empirical

study, using data from public transport procurement contracts in France, we found that

cost function of operators are significantly convex, thus providing empirical evidence that

the optimal effort is increasing in the operator’s type, rather than being a constant as im-

plied by a linear specification of the cost function, which is widely adopted in the related

literature. In addition, the monotonicity of optimal effort has important implications for

the welfare analysis: the social welfare is much smaller under a constant optimal effort

than that under monotone optimal effort.
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Appendix

A Proofs

Proof of Lemma 1. For a cost type associated with the FP contract, the assumption

H ′′(·) > 0 implies that the agent’s objective function

π(θ, e) ≡ q −H(θ − e)− ψ(e) (A.1)

is supermodular in θ and e, and hence the optimal effort e∗ is (weakly) increasing in type

θ by Topkis’s theorem.13 Under the additional assumption ψ′′(·) > 0, the optimal effort is

single-valued due to the fact that the agent’s objective function π(θ, e) is strictly concave

in e. Since π(θ, e) is continuously differentiable in e, we obtain that the optimal effort is

strictly increasing in type, that is, e∗
′
(θ) > 0. Therefore, a less efficient agent will exert

more effort, because an agent with a higher cost type enjoys a larger cost reduction than

a lower cost type whenever exerting the same level of effort. Furthermore, the first-order-

condition of (A.1) with respect to effort e is

H ′(θ − e∗) = ψ′(e∗). (A.2)

The derivative of the equation above with respect to θ on both sides leads to

ψ′′(e∗(θ))e∗
′
(θ) = H ′′(θ − e∗(θ))(1− e∗′(θ)). (A.3)

Under Assumption 1, (A.3) implies that 0 < e∗
′
(θ) < 1 for any type θ with the FP

contract.

Proof of Proposition 1. The proof below is similar to the the arguments in Gagnepain

et al. (2013). Let ΘG ≡ [θ, θl], ΘI ≡ (θl, θu], and ΘB ≡ (θu, θ̄]. Denote respectively by

13See Theorem 2.3 in Vives (2001).
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C0
1 = (b1, b

0
2), C0

2 = (H(θ), b0
3) and C0

3 = (H(θ), H(θ)) the agent’s payments under each

scenario ΘG, ΘI , ΘB, and by C0 = (b1, b
0
2, b

0
3) the overall menu of fixed prices. Denote

R̃ = (C̃2, C̃3) = (̃b2, b̃3) as a subsidy profile offered at the renegotiation stage following an

initial offer C0 and

b̃2 ≥ b0
2 and b̃3 ≥ b0

3. (A.4)

For simplicity, we decompose the proof into two lemmas.

Lemma A.1 (Renegotiation-proof) There is no loss of generality in restricting the

analysis to contracts of the form C = (b1, R) that come unchanged through the renegotia-

tion process, such that R = (b2, b3) maximizes the principal’s second period welfare subject

to the following acceptance conditions:

b̃2 ≥ b2 and b̃3 ≥ b3. (A.5)

Proof of Lemma A.1: For any initial contract C0 and consider a renegotiated offer

R̃ = (̃b2, b̃3) that satisfies (A.4). Given the the agent’s conjecture about the renegotiated

offer R = (b2, b3), the principal’s expected welfare for date 2 becomes14

SW2(C0, R̃, R) =

∫ θl

θ

(
S − (1 + λ)̃b2 + α(̃b2 −H(θ − e∗(θ))− ψ(e∗(θ)))

)
dF (θ)

+

∫ θu

θ∗1

(
S − (1 + λ)̃b3 + α(̃b3 −H(θ − e∗(θ))− ψ(e∗(θ)))

)
dF (θ)

+

∫ θ̄

θ∗2

(S − (1 + λ)H(θ)) f(θ)dθ (A.6)

Then the renegotiated offers R = (b2, b3) must solve

R = arg max
R̃

SW2(C0, R̃, R) subject to (A.4). (R0)

Due to the arbitrary C0, it is easy to obtain that R also solves the following problem

R = arg max
R̃

SW2(C ≡ (b1, R), R̃, R) subject to (A.5). (R)

This completes the proof of Lemma A.1.

Let us now characterize renegotiation-proof allocations by solving the problem R.

14Note that in SW2(C0, R̃, R), θl = θl(b1, b2, b3) and θu = θu(̃b3) not θu(b3).
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Lemma A.2 A first-period menu of contracts C = (b1, b2, b3) is renegotiation-proof if

and only if the following two conditions hold:

θu(b3) ≥ θl(b1, b2, b3) (A.7)(
1− α

1 + λ

)
[F (θu)− F (θl)] =

[H(θu)− b3]f(θu)

H ′(θu − e∗(θu))
(A.8)

Condition (A.7) guarantees that the interval ΘI is non-empty.

Proof of Lemma A.2. First note that the assumption α < 1 + λ implies that the

maximum of the integral in (A.6) requires that (A.5) is binding. Assume that (R) is

strictly quasi-concave in b̃3. The first-order condition of the optimization problem (R)

with respect to b̃3 at b̃3 = b3 is

0 =
dθu
db3

{S − (1 + λ)b3 + α[b3 −H(θu − e∗(θu))− ψ(e∗(θu))]} f(θu)

+

∫ θu

θ∗1

(α− 1− λ)f(θ)dθ − dθu
db3

[S − (1 + λ)H(θu)]f(θu)

=
dθu
db3

(1 + λ)[H(θu)− b3]f(θu) +

∫ θu

θ∗1

(α− 1− λ)f(θ)dθ,

where b3 = H(θu − e∗(θu)) + ψ(e∗(θu)) will be proved in (A.10) below. Note that 1 =

[H ′(θu−e∗(θu))(1−e∗
′
(θu))+ψ′(e∗(θu))e

∗′(θu)]dθu/db3 = H ′(θu−e∗(θu))dθu/db3, we obtain

(1 + λ− α)[F (θu)− F (θl)] =
(1 + λ)[H(θu)− b3]f(θu)

H ′(θu − e∗(θu))
,

which completes the proof of Lemma A.2.

Define now the principal’s intertemporal welfare when offering C = (b1, b2, b3) as15

SW (C) =

∫ θl

θ

{S − (1 + λ)(rb1 + (1− r)b2) + α[rb1 + (1− r)b2 −H(θ − e∗(θ))− ψ(e∗(θ))]}dF (θ)

+

∫ θu

θ∗1

{S − (1 + λ)(rH(θ) + (1− r)b3) + α(1− r)[b3 −H(θ − e∗(θ))− ψ(e∗(θ))]}dF (θ)

+

∫ θ̄

θ∗2

[S − (1 + λ)H(θ)]dF (θ)

The optimal renegotiation-proof menu solves the following optimization problem:16

max
C

SW (C) subject to (A.8). (PR)

15Lemma (A.2) implies that θu = θu(b3) in SW (C), and still θl = θl(b1, b2, b3).
16We assume (A.7) holds with strict inequality and (A.8) holds with equality as shown in Lemma A.2.
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Then the two cut-off types under renegotiation satisfy

b1 +
(1− r)
r

(b2 − b3) = H(θl − e∗(θl)) + ψ(e∗(θl)), (A.9)

b3 = H(θu − e(θu)) + ψ(e(θu)). (A.10)

Due to the fact that dθl
db1

= r
1−r

dθl
db2

by (A.9), it is easy to show that the first-order conditions

for b1 and b2 are the same, thus leading to the same optimal solution bR1 = bR2 ≡ b. Denote

the optimal solution for b3 by b̄. The first-order conditions with respect to b1 and b3 leads

to

r(1 + λ− α)F (θl)

f(θl)
=

(1 + λ)[rH(θl) + (1− r)b− b]− ϑ
(
1− α

1+λ

)
H ′(θl − e∗(θl, w))

,(
1− α

1 + λ

)
[F (θu)− F (θl)] =

[H(θu)− b]f(θu)

H ′(θu − e∗(θu))
− [rH(θl) + b(1− r)− b]f(θl)

rH ′(θl − e∗(θl))

+
ϑm(θl, θu, λ, r, α)

(1 + λ)(1− r)
,

where ϑ > 0 is the Lagrange multiplier of the renegotiation-proof constraint (A.8), and

m(θl, θu, λ, r, α) =

(
1− α

1 + λ

)(
f(θu)

H ′(θu − e∗(θu))
− f(θl)(r − 1)

rH ′(θl − e∗(θl))

)
− [H ′(θu)f(θu) + (H(θu)− b)f ′(θu)]H ′[θu − e∗(θu)]

[H ′(θu − e∗(θu))]3

+
H ′′[θu − e∗(θu)][1− e∗

′
(θu)][H(θu)− b]f(θu)

[H ′(θu − e∗(θu))]3

This completes the proof of Proposition 1.

Proof of Lemma 2. Let (C̃, D̃(1), D̃(2), B̃, B̃) denote the endogenous variables under the

structure S̃. In actuality, the equivalence between S and S̃ can be obtained by taking

a linear transformation that θ̃ = ξ1θ with ξ1 > 0. To do this, let us first consider a

general linear transformation that θ̃ = ξ0 + ξ1θ with (ξ0, ξ1) ∈ R2
+, then the distribution

of θ̃ is F̃ (·) = F ((· − ξ0)/ξ1). To justify the observational equivalence, we need to show

that (D(1), D(2), C,B,B) = (D̃(1), D̃(2), C̃, B̃, B̃), and that the equality (7) holds under

the structure S̃. Let θ̃l = ξ0 + ξ1θl and θ̃u = ξ0 + ξ1θu, then for any θ̃, θ̃ ≤ θ̃l is equivalent

to θ ≤ θl, which implies that D̃(1) = D(1). Similarly, we have D̃(2) = D(2). Note that

ψ̃′(ẽ∗) = H̃ ′(θ̃ − ẽ∗)⇒ ψ′[(ẽ∗ − ξ0)/ξ1] = H ′[(θ̃ − ẽ∗)/ξ1],
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which leads to ẽ∗(θ̃) = ξ0 + ξ1e
∗(θ). For those with FP contracts,

C̃ = H̃(θ̃ − ẽ∗(θ̃∗)) = H[(ξ1θ − ξ1e
∗(θ∗))/ξ1] = H(θ − e∗(θ∗)) = C,

B̃ = H̃(θ̃u − ẽ∗(θ̃u)) + ψ̃(ẽ∗(θ̃u)) = H((ξ1θu − ξ1e
∗(θu))/ξ1) + ψ(ξ1e

∗(θ∗)/ξ1) = B,

B̃ = r[H̃(θ̃l − ẽ∗(θ̃l)) + ψ̃(ẽ∗(θ̃l))] + (1− r)B
= r[H(θl − e∗(θl)) + ψ(e∗(θl))] + (1− r)B = B.

For those associated with CR contracts, since C̃ = H̃(θ̃) = H(θ̃/ξ1) = H((ξ0 + ξ1θ)/ξ1),

then C̃ = C is equivalent to ξ0 = 0 by noting that C = H(θ). In what follows, we just

need to consider that θ̃ = ξ1θ. Since

f̃(θ̃∗j ) =
∂F̃ (θ̃∗j )

∂θ̃∗j
=
∂F (θ̃∗j/ξ1)

∂θ̃∗j
= f(θ̃∗j/ξ1)/ξ1 = f(θ∗j )/ξ1, j = 1, 2

we have(
1− α

1 + λ

)
F̃ (θ̃u)− F̃ (θ̃l)

f̃(θ̃u)
= ξ1

(
1− α

1 + λ

)
F (θu)− F (θl)

f(θu)
= ξ1

H(θu)−B
H ′(θu − e∗(θu, w))

and

H̃(θ̃u)− B̃
H̃ ′(θ̃u − ẽ∗(θ̃u))

=
H̃(θ̃u)− B̃
ψ̃′(ẽ∗(θ̃))

=
H(θu)−B
ψ′(e∗)/ξ1

= ξ1
H(θu)−B

H ′(θu − e∗(θu))
.

Hence, (
1− α

1 + λ

)
F̃ (θ̃u)− F̃ (θ̃l)

f̃(θ̃u)
=

H̃(θ̃u)− B̃
H̃ ′(θ̃u − ẽ∗(θ̃u))

.

This completes the proof.

Proof of Proposition 2. In this proof, we discuss in details the assumptions required

to identify the distribution of E∗ using Schennach and Hu (2013), as well as other related

issues.

In addition to Assumption 2, we need to impose the following restrictions to achieve

identification.

(a) The characteristic function of V1 and V2 do not vanish anywhere.

(b) The distribution of E∗ admits a uniformly bounded density fE∗(e) with respect to the

Lebesgue measure that is supported on an interval (which may be infinite).

(c) The function m(·) is continuously differentiable over the interior of the support of E∗.
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(d) The set χ ≡ {e : m(e) = 0} has at most a finite number of elements e1, · · · , es If χ is

nonempty, fE∗(e) is continuous and nonvanishing in a neighborhood of each el, l = 1, · · · s.
Part (a) is a widely used assumption in the literature of measurement errors. Most of

the commonly encountered distributions satisfy this condition, with the notable exceptions

being the uniform and the triangular distributions. Parts (b)-(c) are standard smoothness

constraints. Part (d) states that we allows for non-monotone function m(·), but rules out

functions that are constant over an interval (not reduced to a point) or that exhibit

an infinite number of oscillations. Nevertheless, this condition is sufficiently flexible to

encompass most specifications of practical interest.

Given Assumption 2 and the conditions (a)-(d), we have the following results on the

identification of fE(·).

1. If m(·) is not of the form m(e) = a+b ln(exp(ce)+d) for some constants a, b, c, d ∈ R.

Then, fE(e) and m(e) are nonparametrically identified.

2. If m(·) is linear, i.e., of the form above with d = 0, fE(e) and m(e) are identified.

Note that if m(·) is linear, Schennach and Hu (2013) show that neither fE∗(·) nor m(·) is

identified if and only if E∗ is normally distributed and either V1 or V2 can be decomposed

as a summation of two variables with one of them being normally distributed. However,

in our setting, the effort e is assumed to be positive and it cannot be normally distributed.

Thus both fE∗(e) and m(e) are identified. According Theorem 1 in Schennach and Hu

(2013), the only scenario where we cannot identify fE∗(e) and m(e) is that (i) m(·) is of

the form m(e) = a+b ln(exp(ce)+d) with d 6= 0, (ii) E∗ has a density of the form fE∗(e) =

A exp(−Bexp(Ce) + CDe)(exp(De) + G)−W where C ∈ R, A,B,D,G,W ∈ [0,∞) and

(iii) V2 can be written as a summation of two random variables with one of them being a

Type I extreme value variable.

Proof of Proposition 3. Before we present the proof, it is useful to point out several

properties of the model under Assumptions 3 and 4. First, the range of realized costs

under FP for firms with W = $1 and W = $2, respectively, are as follows:

[C,C1] ≡ [C1(0), C1(1)], W = $1,

[C,C2] ≡ [C2(0), C2(1)] = [C2(0), C2(p1/p2)] ∪ (C2(p1/p2), C2(1)], W = $2,

where C1(0) = H(θ − e1(θ)) = C2(0) = H(θ − e2(θ)) because Assumption 3 imposes that

e1(θ) = e2(θ) = e. Second, for any quantile τ ∈ (0, p1], the optimal effort and realized

cost under W = $1 and W = $2 satisfy

e1(θ(τ)) < e2(θ(τ)), c1(θ(τ)) > c2(θ(τ))C1(τ/p1) > C2(τ/p2). (A.11)
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Or, equivalently,

E1(τ/p1) < E2(τ/p2), C1(τ/p1) > C2(τ/p2). (A.12)

The first inequality can be proved below by contradiction. Note that ψ′1(e) > ψ′2(e)

for any e > e and (A.2) imply

H ′(θ(τ)− e1(θ(τ))) = ψ′1(e1(θ(τ))) > ψ′2(e1(θ(τ))).

Suppose e1(θ(τ)) ≥ e2(θ(τ)), then H ′′(·) > 0 further implies

ψ′1(e1(θ(τ))) = H ′(θ(τ)− e1(θ(τ)))

≤ H ′(θ(τ)− e2(θ(τ))) = ψ′2(e2(θ(τ))) ≤ ψ′1(e2(θ(τ))). (A.13)

Under the assumption ψ′′(·) > 0, the equation above implies that e1(θ(τ)) < e2(θ(τ)),

which contradicts e1(θ(τ)) ≥ e2(θ(τ)). Therefore, e1(θ(τ)) < e2(θ(τ)). As a result,

C1(τ/p1) > C2(τ/p2) because the realized cost Cj = H(θ − ej(θ)). From the second

inequality, we obtain that for any η < p2, C1(η) > C2(η.p1/p2).

Next, we present the details of the proof. We first choose any realized cost t ∈
[C1(0), C1(1)], then there will be a unique quantile τ0 ∈ [0, p1] of cost C corresponds to t

τ0(t) =

{
0, t = C1(0) = C;

C−1
1 (t), t ∈ (C1(0), C1(1)].

(A.14)

Applying (A.11), we have

t = C1(τ0(t)) > C2(τ0(t) · p1/p2).

Similarly, there exists a unique τ1 ∈ (0, τ0(t)) such that

C1(τ1(t)) = C2(τ0(t).p1/p2) > C2(τ1(t).p1/p2).

We repeat this procedure to obtain the following inequlities:

t = C1(τ0(t)) > C2(τ0(t) · p1/p2) = C1(τ1) > C2(τ1 · p1/p2)

...

= C1(τk(t)) > C2(τk(t) · p1/p2) = C1(τk+1(t))

...

So it ends up with a bounded and decreasing sequence {τk(t)} ⊆ (0, 1), for which

we know a unique limit exists, denoted by τ(t). As τk(t) → τ(t), we have C1(τk(t)) →
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C1(τ(t)), and C2(τk(t) · p1/p2)→ C2(τ(t) · p1/p2). Note that as τk(t) so picked, C2(τk(t) ·
p1/p2) = C1(τk+1(t)). Taking limit on both sides implies

C2(τ(t) · p1/p2) = C1(τ(t)),

which can be only true for τ(t) = 0. Therefore, it has to be the case that τk(t)→ 0.

Now it is readily to derive the iteration equation

H−1(t) = H−1(C1(τ0(t)))

= H−1(C2(τ0(t) · p1/p2)) + ∆Ẽ(τ0(t) · p1)

= H−1(C1(τ1(t)) + ∆Ẽ(τ0(t) · p1)

= H−1(C2(τ1(t) · p1/p2)) + ∆Ẽ(τ1(t) · p1) + ∆Ẽ(τ0(t) · p1)

= · · ·
= H−1(C2(τm(t) · p1/p2)) +

∑m

k=0
∆Ẽ(τk(t) · p1). (A.15)

Rearranging terms yields∑m

k=0
∆Ẽ(τk(t) · p1) = H−1(x)−H−1(C2(τm(t) · p1/p2)).

Taking limit on both side of the equation above yields∑∞

k=0
∆Ẽ(τk(t) · p1) = H−1(x)−H−1(C2(0)).

Or, equivalently, ∑∞

k=0
∆Ẽ(τk(t) · p1) = H−1(x)− (θ − e).

Rearranging terms again yields

H−1(t) = θ − e+
∑∞

k=0
∆Ẽ(τk(t) · p1).

Therefore, H−1(·) is identified for C ∈ [C1(0), C1(1)] because both the sequence {τk(t)}
and each ∆Ẽ(τk(t) · p1) = E2(τk(t) · p1/p2)−E1(τk(t)) are identified. This completes the

proof.

Proof of Corollary 1. The proof of Corollary 1 is similar to that of Proposition 3.

The main difference of identification in Corollary 1 is to first identify the intersection

point ec which corresponds to the intersection point of the two cost distributions under

W = $1 and W = $2. Under Assumption 4, it is easy to show that there exists a

θc ∈ [θ, θ1
u] such that E1(τc/p1) = E2(τc/p2) = ec, where τc satisfies θc = θ(τc) due to

the one-to-one mapping between cost and type. And, τc is identified by C1(τc/p1) =
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C2(τc/p2) since the two distribution functions of C1 and C2 intersect only once at the cost

quantile corresponding to θ(τc). As a result, ec is also identified. Obviously, H−1(t) can

be identified for any t on its support as long as θ(τc) can be recovered due to the following

identification equation similar to (16)

H−1(t) = θ(τc)− ec +
∞∑
k=0

∆Ẽ(τk(t).p1).

Following the identification argument in Proposition 3, we obtain

H−1(C1(0)) = θ(τc)− ec +
∞∑
k=0

∆Ẽ(τk(C1(0)).p1).

On the other hand,

H−1(C1(0)) = θ − e1(0).

Therefore, θ(τc) is identified as

θ(τc) = θ − e1(0) + ec −
∞∑
k=0

∆Ẽ(τk(C1(0)).p1).

Proof of Proposition 4. The proposed estimators {θ̂i}ni=1, F̂θ(·), ̂α/(1 + λ), ψ̂(·), and δ̂

can all be viewed as plug-in estimators based on the estimated cost function Ĥ(·). So the

consistency of Ĥ(·) is the key to guarantee consistency of all other estimators. Under the

parameterization H(·; β) with it being continuous in β, H(t; β) is consistently estimated

by H(t; β̂) for any given t ∈ [θ− e, θ] if β̂ is consistent for β, according to the continuous

mapping theorem (CMT). In what follows in the proof of Proposition 4, we focus on

showing the consistency of β̂.

Define

Q(β) =
L∑
l=1

[
H−1(C2(al ·

p1

p2

); β)−H−1(C1(al); β) + E2(al ·
p1

p2

)− E1(al)

]2

. (A.16)

and

Qn(β) =
L∑
l=1

[
H−1(Ĉ2(al ·

p̂1

p̂2

); β)−H−1(Ĉ1(al); β) + Ê2(al ·
p̂1

p̂2

)− Ê1(al)

]2

. (A.17)

Then the true value of β, denoted by β0, is equivalently characterized as

β0 = argmin
β:H(θ−e;β)=c

Q(β). (A.18)
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And the estimator is

β̂ = argmin
β:H(θ−e;β)=c

Qn(β). (A.19)

As shown above, β̂ is an extremum type estimator.

When β is identified (which is a condition required in Proposition 4),

inf
β∈B:d(β,β0)≥ε

Q(β) > 0 = Q(β0) (A.20)

for every ε > 0, due to the compactness of {β ∈ B : d(β, β0) ≥ ε} and continuity of Q(·),
the latter of which follows from the boundedness and continuity of H(·).

Also, the compactness of B, the continuity ofH(·), and the consistency of {p̂1, p̂2, Ĉ1(al), Ĉ2(al·
p1
p2

), Ê1(al), Ê2(al · p1p2 )}Ll=1 guarantee that

sup
β∈B
|Qn(β)−Q(β)| p→ 0. (A.21)

According to 5.7 Theorem in van der Vaart (1999), (A.20) and (A.21) imply that

β̂
p→ β0, which completes the proof.

Identification and estimation under constant optimal effort: Denote by cF the

upper bound of costs associated with CF choices, then

cF = H(θu − e∗) = β(θu − e∗). (A.22)

Using the optimal condition b = H(θu − e∗) + ψ(e∗) in (7), one obtains

ψ(e∗) = b− cF

and hence we identify the optimal effort level as

e∗ = (b− cF )1/2.

Denote by cR the lower bound of costs associated with CC choices, then this realized cost

cR = H(θu) = βθu. (A.23)

Combining (A.22) with (A.23), we can identify the parameter β as

β = (cR − cF )/(b− cF )1/2.
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Once β is identified, we can recover the innate cost as follows.

θ =


c(b− cF )1/2/(cR − cF ) + (b− cF )1/2, for FP contracts,

c(b− cF )1/2/(cR − cF ), for CR contracts.

(A.24)

The distribution of innate costs F (·) is then identified based on the recovered θ. The

discount factor δ and the bargaining power α can be identified using (7).

The constructive identification strategy above suggests a semiparametric estimation

procedure to estimate all the model primitives. We omit the details in the paper.
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