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1 Demand Characterization with Bundles

In this section, we derive demand functions from the “product bundle”perspective.

Although the functions are identical to those presented in the main text, this alter-

native method enables us to conduct more in-depth demand analysis which forms

the basis of the additional results shown in this appendix, such as those on the

multi-tier access prices in Section 3.

What combination, or bundle, of products each shopper purchases (if any) de-

pends on his type x and the final prices he perceives for all possible bundles. Any

bundle, denoted by J , is a subset of the full bundle N . The empty bundle is ∅ ⊆ N .

A general profile of the platform’s access price m and all sellers’ prices p ≡
(p1, ..., pn) is called a price schedule, denoted (m,p). Given (m,p), the final price

that a shopper who chooses bundle J ⊆ N pays, denoted yJ , is given by

yJ =


∑
j∈J

pj +m , if J 6= ∅;

0 , if J = ∅;
(1.1)

which essentially defines a multiproduct two-part tariff . The platform’s access price

m applies if you buy anything, whereas each seller’s price applies only if you buy

from that seller. A change inm will therefore change the final prices of all non-empty

bundles by the same amount.
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Given (m,p), shopper x =(x1, ..., xn) chooses bundle J 6= ∅, if and only if∑
j∈J

(xj − pj)−m ≥ max{0,
∑
k∈K

(xk − pk)−m;∀K ⊆ N,K 6= ∅}, (1.2)

which guarantees that J provides the highest surplus. Otherwise, he chooses the

empty bundle. Denote AJ(m,p) the set of all the shoppers who choose the non-

empty bundle J , also called the demand segment of J , and we must have

AJ(m,p) = {x ∈ In|x satisfies (1.2)}. (1.3)

Whenever indifferent, we assume that a shopper chooses the largest bundle, or

randomizes with equal probabilities among equal-sized bundles.1 For any A ⊆ In,

we denote the probability measure of A as Pr[x ∈ A] =
∫
A
f(x)dx.

Demand

Definition 1 (Individual Seller’s Demand) Given (m,p), the demand segment

of seller j is the set of all shoppers who buy bundles that contain product j, denoted

Bj(m,p) ≡
⋃

J3j
AJ(m,p), (1.4)

and the demand for seller j is the probability measure of Bj(m,p), denoted

Dj(m,p) ≡
∫
Bj(m,p)

f(x)dx. (1.5)

Note that Bj(m,p) represents all shoppers who buy product j, no matter if they

also buy other products. Seller j’s demand segment is denoted by calligraphic Bj
for distinction from the demand segment of the single-product bundle Aj(m,p). In

fact, by (1.4), Bj(m,p) ⊇ Aj(m,p).

Definition 2 (Platform’s Demand) Given (m,p), denote the set of all shoppers

who visit the platform (i.e. all purchasing shoppers)

B0(m,p) ≡
⋃

j∈N
Bj(m,p) =

⋃
J 6=∅

AJ(m,p) = In\A∅(m,p), (1.6)

1From (1.3) we know that all demand segments are closed. The intersection of different demand
segments defines their “boundary”, i.e. the set of indifferent shoppers. As density f has no
atoms, shoppers on any boundary have zero mass and therefore do not pose a problem for demand
measurement based on f to be defined shortly.
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and the platform’s demand is the probability measure of B0(m,p), denoted

D0(m,p) ≡
∫
B0(m,p)

f(x)dx. (1.7)

Lemma 1.1 Given (m,p), for any j ∈ N , Dj(m,p) and D0(m,p) are well defined

and their expressions are given in the proof of Lemma 1 in the main text.

For expository simplicity, all proofs are put into Section 5 of this document.

Given (m,p), the maximized aggregate consumer surplus is given by equation

(5) in the main text, and is repeated below for convenience:

V (m,p) ≡ Ex[max{0,
∑
k∈K

(xk − pk)−m,K ⊆ N,K 6= ∅}], (1.8)

Using the demand functions and V (m,p), we have the next result.

Lemma 1.2 When n ≥ 2, given (m,p), suppose there exist j, k ∈ N , such that

j 6= k, Dj > 0, and Dk > 0. Then we have

i) ∂Dj
∂m

= ∂D0
∂pj

< 0,

ii) ∂D0
∂m

<
∂Dj
∂m
, and

iii) ∂Dj
∂pj

< ∂D0
∂pj
.

In the following sections, whenever sharing between sellers and the platform is

relevant, we only use profit sharing to illustrate the results and their intuition.

2 Properties of the Best-Response Functions

2.1 Sellers’best response

Seller j’s best response to m and p−j is defined by her first-order condition in the

main text, as an implicit function p∗j(m,p−j). It has the following property.

Proposition 2.1 (Seller’s Best Response) i)
∂p∗j
∂m

< 0 if ∂
2Dj
∂p2j
≤ 0 and ∂2D0

∂p2j
≤ 0;

ii) For k 6= j,
∂p∗j
∂pk

< 0 if ∂Dj
∂pk

< 0, ∂
2Dj
∂p2j
≤ 0 and ∂2Dj

∂pj∂pk
≤ 0.

Part i) shows that a seller may respond to an increase in the platform’s access

price with a lower price under some conditions, which indicates that these prices

are strategic substitutes. The conditions ∂2Dj
∂p2j
≤ 0 and ∂2D0

∂p2j
≤ 0 require that the

demand of seller j and that of the platform are both weakly concave in the seller’s
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price. They hold, for instance, when f is the uniform distribution, where ∂2Dj
∂p2j

= 0

and∂
2D0
∂p2j

< 0.

Part ii) shows that different sellers’prices are also strategic substitutes under

some conditions. Condition ∂Dj
∂pk

< 0 requires that j and k are complements, and

this happens if and only if m > 0 according to Lemma 1. Condition ∂2Dj
∂pj∂pk

≤ 0

requires that seller j’s demand is submodular in its own price and another seller k’s

price, which also holds when f is the uniform distribution, where ∂2Dj
∂pj∂pk

= 0.

2.2 The platform’s best response

First-order condition (7) in the main text defines the platform’s optimal strategy as

an implicit function of sellers’prices p and of the profit shares it takes from sellers’

profits, m∗(p, {βk}k∈N). The next results come from a comparative-statics analysis.

Proposition 2.2 (Impact of Bargaining Power on Optimal Access Price)
Suppose g′j(α) > 0 for any α ∈ [0, 1]. Then more bargaining power of the platform

relative to seller j leads to a lower access price, i.e. ∂m∗

∂αj
< 0, if and only if

∑
k∈N

βk ·
ηk
εk

(
∂2D0/∂m

2

∂D0/∂m
− ∂2Dk/∂m

2

∂Dk/∂m
) < 2σ0 +

∂2D0/∂m
2

∂D0/∂m
. (2.1)

Under condition (2.1), Proposition 2.2 implies that the platform’s bargaining

power relative to each individual seller monotonically and negatively affects its

equilibrium level of access price. The following result provides a simpler suffi cient

condition for ∂m∗

∂αj
< 0.

Corollary 2.3 Condition (2.1) is implied by the following conditions

∂2D0

∂m2
≤ 0, and

∂2D0/∂m
2

∂D0/∂m
<
∂2Dk/∂m

2

∂Dk/∂m
for any k ∈ N. (2.2)

Condition ∂2D0
∂m2 ≤ 0 requires that the platform’s demand is weakly concave in

the access price. It holds, for instance, when f is the uniform distribution. Condi-

tion ∂2D0/∂m2

∂D0/∂m
< ∂2Dk/∂m

2

∂Dk/∂m
means that ∂D0/∂m is less elastic than ∂Dk/∂m, when

elasticities are measured with respect to m.

Proposition 2.4 (Platform’s Best Response) ∂m∗

∂pj
< 0 if condition (2.1) holds,

m∗ ≥ c, ∂
2Dj
∂m2 ≤ 0 and ∂2D0

∂pj∂pk
≤ 0 for any k ∈ N .
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Condition ∂2Dj
∂m2 ≤ 0 requires that seller j’s demand is weakly concave in the

access price. Condition ∂2D0
∂pj∂pk

≤ 0 requires that platform’s demand is submodular

in j’s and any other seller’s prices. They hold, for instance, when f is the uniform

distribution.

3 Multi-Tier Access Prices

In real life, multi-seller platforms often offer discounts when there are access fees.

For instance, parking charges at a shopping mall may vary according to how much

shoppers purchase at the mall. A seemingly popular practice is that a shopper

gets a discount on parking fee once his total expenditure or total number of items

purchased exceeds some threshold. This in effect creates two different tiers of access

fees: shoppers with purchases lower than the threshold are charged a higher fee, say

m, whereas shoppers with purchases higher than the threshold pay a lower fee, say

(m− e), with a discount e > 0.

In this section, we use our model to study when introducing such a discount

would be profitable. Suppose the sellers charge p, and the platform is considering

whether to introduce a discount of e > 0 on its access price m, for shoppers who

purchase n or more products. For any bundle J ⊆ N , denote |J | its bundle size -
the number of products in it.

Definition 3 (Two-Part Tariff with Access Discount) A two-part tariff with

an access discount for any bundle of at least n products, is a generalized price sched-

ule2 R = {rJ}J⊆N consisting of four parts (m,p,e, n), where

(m,p) is a two-part tariff defined in (1.1);

e ∈ (0,m];

rJ =


∑
j∈J

pj +m− e , if |J | ≥ n;∑
j∈J

pj +m , if 0 < |J | < n;

0 , if J = ∅;

and 2 ≤ n ≤ n.

(3.1)

If n = 1, it is clear that R = (m − e,p), exactly the same as a two-part tariff

with access price (m − e), and the discount e in is case has no different role than
2The “most general” price schedule in this model consists of 2n prices, as there are 2n pos-

sible bundles (including the empty bundle). Because sellers and the platform are not allowed to
coordinate on prices, the relevant price schedules we need to consider are simpler.
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the original access price m. Therefore, in this section we focus on the case when the

threshold n ≥ 2.

Suppose the platform originally charges shoppers a fee, then offering a small

discount e to all shoppers who buy at least n products results in decreases in demand

for all bundles of less than n products and increases in demand for all bundles of

at least n products. Note that the decrease in demand for bundles of less than n

products is not due to shoppers leaving the platform. An additional discount on the

access fee is no bad news to any shopper and therefore will not discourage entry.

On the contrary, the decrease in demand for smaller bundles is due to marginal

shoppers of smaller bundles now switching to larger bundles in order to qualify

for the discount. (Figure 4 in the proof of Proposition 3.2 illustrates the demand

changes induced by the access discount.)

Similar to (1.8), we re-define the maximized aggregate consumer surplus given

R = (m,p,e, n) in (3.1), denoted

V ′(m,p,e, n) ≡ Ex[max{0,
∑

k∈K,|K|≥n

(xk−pk)−m+e,
∑

k∈K,|K|<n

(xk−pk)−m,∀K ⊆ N,K 6= ∅}].

(3.2)

and assume that V ′ is twice differentiable. Denote D(|J |≥n)(R) the total demand for

all multi-seller bundles of at least n products given R, that is,

D(|J |≥n)(R) ≡
∫
∪J⊆N,|J|≥nAJ (R)

f(x)dx.

Using (3.2) and the demand functions defined previously in (1.5) and (1.7), by

a similar envelope argument as before, we have, for any j ∈ N ,

D(|J |≥n) =
∂V ′

∂e
, Dj = −∂V

′

∂pj
, and D0 = −∂V

′

∂m
,

and therefore the next result follows from the Slutsky symmetry of V ′(·).

Lemma 3.1 Given R = (m,p,e, n) in (3.1), for any j ∈ N ,

∂Dj

∂e
= −

∂D(|J |≥n)

∂pj
> 0, and

∂D0

∂e
= −

∂D(|J |≥n)

∂m
> 0. (3.3)

The platform’s profit given R = (m,p,e, n) is:

π′(m,p,e, n)≡
∑
j∈N

βj(pj − cj)Dj(R) + (m− c)D0(R)− eD(|J |≥n)(R).
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When on earth would the platform have an incentive to offer such an access

discount? The answer depends on the sign of ∂
∂e
π′(m∗, {p∗j}j∈N ,e = 0, n). That is,

starting from the equilibrium prices without discount (m∗,p∗), the platform will

have an incentive to offer an access discount if this raises its profit.

Denote

ηnm ≡ −
∂D(|J|≥n)

∂m
· m
D(|J|≥n)

, the elasticity of demand for bundles of at least n products,

with respect to m, and

ηnj ≡ −
∂D(|J|≥n)

∂pj
· pj
D(|J|≥n)

, the elasticity of demand for bundles of at least n products,

with respect to pj.

Add ∗ to their equilibrium values without discount, and the next result follows.

Proposition 3.2 (Incentive for Access Discount) Suppose without access dis-
count, the platform’s optimal access fee or subsidy is m∗ and the sellers’ optimal

prices are p∗, then the platform has an incentive to offer a discount to all shoppers

who buy from at least n(≥ 2) sellers if

m∗ − c
m∗

· ηn∗m︸ ︷︷ ︸
gain from increased demand for platform

as a fraction of loss in discount

+
∑
j∈N

βj ·
ηn∗j
ε∗j︸ ︷︷ ︸

gain from increased demand for seller j

as a fraction of loss in discount

> 1.

(3.4)

The profitability of a one-unit access discount depends on the trade-off between

an increased demand for all multi-seller bundles of n or more products, and the

loss in discount paid out to all shoppers purchasing such bundles, equal to D(|J |≥n).

From Lemma 3.1 we know that the access discount actually increases demand for

all sellers and for the platform, and that these marginal increases are equivalent to

the marginal increases in the demand for bundles of n or more products, induced

by a price cut in pj and in m, respectively. The second term on the left-hand side

of (3.4) represents the sum of the platform’s gains due to the increase in individual

seller’s demand, as a fraction of the loss D(|J |≥n). Similarly, the first term represents

the gain from the platform’s existing access price due to the increase in its demand,

also as a fraction of the loss. The platform therefore has an incentive to offer an

access discount when it gains more than it loses.

Intuitively, it is more likely for an access discount to be profitable if the demand

for all multi-seller bundles of at least n products is more elastic, when measured by

either m or pj, such that an access discount induces more gains for the platform.
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Moreover, from the platform’s first-order condition without discount (8) in the main

text we know that
m∗ − c
m∗

= (1−
∑
j∈N

βj ·
η∗j
ε∗j

)/η∗0,

and therefore it is also more likely for an access discount to be profitable if the

demand for the platform as a whole is less elastic, when measured by either m or

pj (i.e. a lower η∗0 or η
∗
j), such that the platform has a higher profit margin without

the discount, and can therefore gain more from the higher demand induced by the

discount.

Note that condition (3.4) is evaluated at the optimal two-part tariff set by the

platform and the sellers, (m∗,p∗), just as in the optimal access price (9) in the

main text. However, there is an interesting contrast between these conditions. The

elasticities in (9) are calculated using the total demand for the platform, whereas

those in (3.4) exclude the demand for all bundles of less than n products.

The fundamental reason why offering a discount that in effect creates a second

(and lower) tier of access fee can be profitable is that it achieves better price discrim-

ination, under “favorable”conditions like (3.4). Similar arguments should apply to

using more tiers of access prices.

4 A More General Framework

The purpose of this section is to show that, two assumptions used in the main text

can be relaxed to include more general cases, without affecting the main findings

and their intuition in the article. These assumptions are: Each shopper has unit

demand for each product, and has additive valuations for different products. Both

were invoked to reduce the burden on characterizing shopper demand.

In this section, they are relaxed to allow for multi-unit demand and non-additive

valuations. We further allow for more diverse preferences of different shoppers,

parameterized by general multi-dimensional types. As long as each shopper can

still choose an optimal “shopping basket”of various sellers’products (possibly with

multiple units), we will be able to define the platform’s and each seller’s demand

in a similar way as in the main text. Therefore the equations for equilibrium seller

prices and equilibrium access price remain the same as before.

However, the demand functions now depend both on shoppers’utility function,

and the distribution function of their types. In order to rule out “ill-behaved”such

functions, we introduce a new assumption - A2 (to be presented shortly) - which
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can be interpreted as a strong version of the law of demand. It requires that each

shopper who visits the platform has a weakly downward-sloping demand curve for

every product, other things being equal. This new assumption allows us to simplify

the formula for the equilibrium access price, and derive the same suffi cient conditions

for an equilibrium fee/subsidy, as those presented in the original paper.

4.1 Modelling framework

The settings regarding the sellers and the platform are the same as in the main text.

The setting about shoppers’preferences are different here.

Following Armstrong (1996), suppose that there is a continuum of shoppers of

mass 1, who have a variety of preferences over these products parameterized by the

l-dimensional real-valued vector θ ≡ (θ1, ...θl). Suppose that a type-θ shopper’s

utility when he chooses a shopping basket q ≡ (q1, ..., qn) ∈ R+n and makes a

total payment t is given by

u(θ,q)− t

where qj = 0, 1, 2, ... represents the number of units of product j purchased, and

t includes all prices he pays to the platform and to the relevant seller(s), minus

any subsidies he obtains. Assume u(θ,0) = u(0,q) = 0, and u is continuous and

increasing in all arguments.

Shoppers are heterogeneous such that θ varies across them following probability

distribution F with density f . Denote Fj the marginal distribution of θj, and fj its

marginal density.3 These distributions are known to the sellers and the platform.

The support of f is denoted Ω.

Assumption A1 Ω is a weakly convex and bounded subset of R+l with full dimen-

sion; f is atomless and f(θ) > 0 if and only if θ ∈ Ω.

The assumption on the timing of the pricing game is the same as in the main

text.

Demand Shoppers’demand depends on their type and the final prices they per-

ceive for different shopping baskets, which include the prices charged (and subsidies

3When there is little risk of confusion, the same notations are used in this section for some
variables or functions as those for their counterparts in the main text, although there may be
differences in their definitions. This small abuse of notations can help us draw comparisons between
the original model and the current more general one.
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offered, if any) by different sellers and the platform. A profile of all sellers’prices is

denoted (as a column vector) p ≡ (p1, p2, ..., pn)T ∈ Rn. Without any access fee or
subsidy, the final price for shopping basket q would simply be qp =

∑
j∈N

qjpj.

When the platform sets an access pricem that applies to all purchasing shoppers,

it changes the final prices of all shopping baskets by the same amount m. Combined

with the seller’s prices p, the resulting price schedule is essentially the following

multiproduct two-part tariff.

Definition 4 (Two-Part Tariff for Shopping Basket) A two-part tariff consists
of two parts (m,p), where m ∈ R is the platform’s access price, p = (p1, p2, ..., pn)T

is a profile of all sellers’prices, and the total payment for shopping basket q =(q1, ..., qn)

under (m,p) is given by

t(q,m,p) =

 qp+m =
∑
j∈N

qjpj +m , if q > 0.

0 , if q = 0.
(4.1)

Note that q > 0 requires that q has at least one strictly positive element. Given

a two-part tariff (m,p) and its payment schedule t in (4.1), assume each shopper

has an optimal shopping basket, denoted

q∗(θ,m,p) ≡ arg max
q

[u(θ,q)− t(q,m,p)], (4.2)

in which the optimal quantity purchased from seller j is denoted q∗j (θ,m,p). The

maximized aggregate consumer surplus is denoted

V (m,p) ≡ Eθ[u(θ,q∗(θ,m,p))− t(q∗(θ,m,p),m,p)], (4.3)

and assumed to be twice differentiable.

Given two-part tariff (m,p), the demand for seller j ∈ N is denoted

Dj(m,p) ≡
∫

Ω

q∗j (θ,m,p)dF (θ)= Eθ[q
∗
j (θ,m,p)], (4.4)

and the platform’s demand is denoted

D0(m,p) ≡ Pr[q∗(θ,m,p) > 0] = 1− Pr[q∗(θ,m,p) = 0]. (4.5)

Using the demand functions and the aggregate consumer surplus, by an envelope
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argument we have, for any j ∈ N ,

Dj = −∂V
∂pj

, and D0 = −∂V
∂m

.

Therefore, similar to Lemma 1 in the main text, the next result follows immediately

from the Slutsky symmetry of V in (4.3).

Lemma 4.1 Given two-part tariff (m,p), for any j ∈ N such that Dj > 0, we have

∂Dj

∂m
=
∂D0

∂pj
.

4.2 Optimal pricing

Given the previous new general modelling framework, all discussions in Section 3 of

the main text hold. In particular, the optimal pricing formulas for sellers and for

the platform, presented in Lemma 2 and Proposition 1, all still hold in the current

new context. So does the necessary and suffi cient condition (10) for an equilibrium

access subsidy in Proposition 2. We repeat these results here for further discussion.

Lemma 4.2 Given m and p−j, seller j’s optimal price p∗j satisfies

p∗j − cj
p∗j

=
1

εj
, or equivalently, p∗j = cj +

1

σj
. (4.6)

Proposition 4.3 (Optimal Access Pricing) Given sellers’equilibrium prices p∗

and price elasticities of demand {ε∗j}j∈N , the platform’s equilibrium access price m∗

is given by

m∗ = c+
1

σ∗0
(1−

∑
j∈N

βj ·
η∗j
ε∗j

). (4.7)

Proposition 4.4 (Choice between Access Fee and Subsidy) In equilibrium, the
platform offers an access subsidy (i.e. m∗ < 0) if and only if∑

j∈N
βj ·

η∗j
ε∗j
> 1 + cσ∗0. (4.8)

In order to further derive suffi cient conditions for an equilibrium fee and a sub-

sidy, we need the following assumption.

Assumption A2 (Law of Demand)
q∗j (θ,m,p)

Pr[q∗(θ,m,p)>0]
is non-increasing in pj, for

any θ ∈ Ω and j ∈ N .
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Assumption A2 represents a strong version of the “law of demand”, which re-

quires that each shopper who enters the platform has a (weakly) downward-sloping

demand curve for every product, other things being equal. Because q∗j and Pr[q∗ > 0]

depend on both the utility function u and the distribution function F , Assumption

A2 rules out other “ill-behaved”such functions. The model in our original paper is

clearly a special case where this assumption holds.

We call Assumption A2 a “strong” version for two reasons: 1) it applies to a

shopper’s demand for j conditional on him staying with the platform; and 2) it

applies to individual demand rather than aggregate demand. In fact, Assumption

A2 implies the following similar conclusion as Lemma 3 in the main text, which will

help us simplify condition (4.8).

Lemma 4.5 Under Assumption A2, when n ≥ 2, the platform’s demand is less

elastic than each seller’s demand when elasticities are measured by that seller’s price.

That is, for any j ∈ N , such that Dj > 0, we have

ηj ≤ εj.

Therefore
∑
j∈N

βj
η∗j
ε∗j
≤
∑
j∈N

βj, and the next results follow immediately from (4.8).

Corollary 4.6 (Equilibrium Access Fee) Under Assumption A2, the platform
charges an access fee (m∗ ≥ c ≥ 0) in equilibrium if∑

j∈N
βj ≤ 1. (4.9)

Corollary 4.7 (Equilibrium Access Subsidy) Under Assumption A2, the plat-
form offers an access subsidy (m∗ < 0) in equilibrium if∑

j∈N
βj >

1

λ̂
(1 + cσ∗0). (4.10)

Note that Corollary 3 in the main text does not depend on Assumption A2.

4.3 Model in original paper as a special case

The model in our original paper can be seen as the following special case: Each

shopper demands 0 or 1 unit of each product, i.e., qj ∈ {0, 1}; l = n such that the

taste parameter θ is now an n-dimensional real-valued vector, and θj = xj, which

represents a shopper’s valuation of (or the utility he derives from) product j; these
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valuations are additive such that the net utility a shopper derives from purchasing

a set of products simply equals the sum of his valuations for these products, minus

all the prices he pays.

When shopper θ (or equivalently x) purchases from any non-empty subset J ⊆ N

of sellers, given the two-part tariff (m,p) in (4.1), his utility is∑
j∈J

(xj − pj)−m.

All the results in the original paper therefore follow directly.

5 Proofs

In these proofs, it is sometimes more convenient to use general price schedules,

denoted P ≡ {pJ}J⊂N , where pJ ∈ R for any J ⊂ N . We assume p∅ = 0 in all price

schedules without loss of generality.

Proof of Lemma 1.1 Given (m,p), we provide and prove the following three

lemmas (5.1 through 5.3) which characterize the allocations of shoppers, and then

D0(m,p) and Dj(m,p) follow by definition. For expository simplicity, in the fol-

lowing characterization we only consider price schedules where pj ≥ 0 for all j ∈ N .
A negative price proves unprofitable in seller j’s maximization problem.

The bundle that only contains product j is denoted {j}, and simplified to j when
it does not cause confusion. Denote JC ≡ N\J the complementary bundle of J .
jC simply means {j}C . For any bundle J ⊂ N , denote |J | its bundle size - the
number of products in it. A shopper allocation given price schedule P is the profile

of demand segments of all bundles induced by P, denoted {AJ(P)}J⊂N . A price

schedule P ≡{pJ}J⊂N is called additive if p∅ = 0 and pJ =
∑
j∈J

pj for any non-empty

J ⊂ N . An additive price schedule can also be simply written as p = (p1, p2, ..., pn).

From (1.1), we know the two-part tariff (m,p) is additive if and only if m = 0.

In the following proofs we often use Y ≡{yJ}J⊂N to represent the two-part tariff

(m,p) in (1.1) as a price schedule.

Lemma 5.1 (Additive Allocation) If P = {pJ}J⊂N is additive, the allocation it
induces {AJ(P)}J⊂N satisfies for any J ⊂ N,

AJ(P) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC} (5.1)
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As illustrated in Figure 1, an additive price schedule allocates all shoppers into

“hyperrectangles”delineated by orthogonal hyperplanes, each defined by an equa-

tion xj = pj.

Figure 1. Additive Allocation (n = 3, pj= 0.5)

Lemma 5.2 (Allocation under Access Fee) Whenm ≥ 0, the allocation {AJ(m,p)}J⊂N
induced by (m,p) in (1.1) satisfies, for any J ⊂ N ,

AJ(m,p) =


{x ∈ In|

∑
j∈J

xj ≥
∑
j∈J

pj +m;xj ≥ pj, ∀j ∈ J ;xk ≤ pk,∀k ∈ JC} , if J 6= ∅;

{x ∈ In|
∑
k∈K

xk <
∑
k∈K

pk +m,∀K 6= ∅, K ⊂ N} , if J = ∅.

(5.2)

(On the Left: View from Origin) (On the Right: View Facing Origin)

Figure 2. Allocation under Access Fee (n = 3,m = 0.2, pj= 0.5)

Lemma 5.3 (Allocation under Access Subsidy) When m ≤ 0, the allocation
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{AJ(m,p)}J⊂N induced by (m,p) in (1.1) satisfies, for any J ⊂ N ,

AJ(m,p) =


{x ∈ In|xj ≥ pj,∀j ∈ J ;xk < pk,∀k ∈ JC} = AJ , if |J | > 1;

{x ∈ In|xj − pj ≥ max[m,xk − pk], xk ≤ pk,∀k ∈ jC} , if J = {j};
{x ∈ In|xk ≤ pk +m,∀k ∈ N} , if J = ∅.

(5.3)

Figure 3. Allocation under Access Subsidy (n = 3, s ≡ −m = 0.1, pj= 0.5)

Therefore Dj(m,p) and D0(m,p) exist by Definitions 1 and 2. Now we prove

these three lemmas on allocations.

Lemma 5.1 proof When P = {pJ}J⊂N is additive, by definition the following
two conditions are clearly equivalent for any J ⊂ N : (i)

∑
j∈J

xj − pJ ≥
∑
k∈K

xk −

pK ,∀K ⊂ N ;(ii) xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC .
Lemma 5.2 proof For (m,p) in (1.1), denote P =(p1, ..., pn), which is the

additive price schedule comprised only of the prices set by sellers. By Lemma 5.1

and (1.3), we know AJ(P) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk < pk,∀k ∈ JC}.
By (1.1) and (1.3), A∅(m,p) = {x ∈ In|

∑
k∈K

xk <
∑
k∈K

pk +m,∀K 6= ∅, K ⊂ N};

and AJ(6=∅)(m,p) = {x ∈ In|
∑
j∈J

xj ≥
∑
j∈J

pj +m;
∑
j∈J

xj−
∑
j∈J

pj ≥
∑
k∈K

xk−pK ,∀K ⊂

N} = {x ∈ In|
∑
j∈J

xj ≥
∑
j∈J

pj + m;xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC}. The last

equation is due to the equivalence between (i) and (ii) in the proof of Lemma 5.1.

Lemma 5.3 proof In order to distinguish access subsidies from fees, we denote
a subsidy by s ≡ −m. In this proof, we require that s ≥ 0. Use Y ={yJ}J⊂N
to represent the two-part tariff (m,p) in (1.1) as a price schedule, and we have

yJ = pJ − s, if J 6= ∅; yJ = 0, if J = ∅. The allocation when m = 0 is defined

in (5.1), and for any J ⊂ N , AJ(Y) is given by (1.3). Now we study J of different

sizes.
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i) When |J | > 1, for any such J ⊂ N , we have yJ = pJ − s, which implies

∑
j∈J

xj−yJ ≥
∑
k∈K

xk−yK , ∀K ⊂ N ⇔


(a)

∑
j∈J

xj − pJ ≥
∑
k∈K

xk − pK ,∀K ⊂ N,K 6= ∅;

(b)
∑
j∈J

xj − pJ ≥ −s , when K = ∅.

From the equivalence between (i) and (ii) in the proof of Lemma 5.1, we know that

for |J | > 1,

part (a) above⇔
{
(a1) xj ≥ pj ,∀j ∈ J ;

(a2) xk ≤ pk ,∀k ∈ JC .

And it is straightforward to see that (a1) implies (b) above, as P =(p1, ..., pn) is

additive. This means that when we use an access subsidy s > 0, the participation

condition of any multi-seller shopper is not binding.

From (a1) and (a2) we know, for any J such that |J | > 1, the two-part tariff

with a subsidy Y = (m ≤ 0,p) induces the same demand segment as P:

AJ,|J |>1(Y) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC} = AJ,|J |>1(P)

ii) When |J | = 1, i.e. J = {j}. For any j ∈ N , yj = pj − s, which implies

∑
j∈J

xj−yJ ≥
∑
k∈K

xk−yK ,∀K ⊂ N ⇔



(c) xj − pj ≥
∑
k∈K

xk − pK ,∀K 3 j,K ⊂ N ;

(d) xj − pj ≥
∑
k∈K

xk − pK ,∀K 63 j, |K| > 1, K ⊂ N ;

(e) xj − pj ≥ xk − pk ,∀k ∈ jC ;

(f) xj − pj ≥ −s , when K = ∅.

If we write out the right-hand side of (c) above for K of different sizes, we have

part (c) above⇔ (c1) xk ≤ pk, ∀k ∈ jC .

Also, it is clear that (c1) and (e) together imply (d) as P is additive. Therefore we

only need (c1), (e) and (f) to fully characterize the demand segment of any single

product j ∈ N that Y induces, which is

Aj(Y) = {x ∈ In|xj − pj ≥ max[−s, xk − pk], and xk ≤ pk,∀k ∈ jC}

Note that this is different from the single-seller segments induced by P in (5.2).
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iii) When |J | = 0, i.e. J = ∅, we have y∅ = p∅ = 0, which implies

∑
j∈J

xj−yJ ≥
∑
k∈K

xk−yK , ∀K ⊂ N ⇔

 (g) 0 ≥
∑
k∈K

xk − pK + s , ∀K ⊂ N, |K| > 1;

(h) 0 ≥ xk − pk + s ,∀k ∈ N.

Clearly, (h) implies (g) as s ≥ 0 and P is additive. Therefore we have

A∅(Y) = {x ∈ In|xk ≤ pk − s,∀k ∈ N}.�

Proof of Lemma 1.2 For any A ⊂ In, denote the probability measure of A as

M(A) ≡ Pr[x ∈ A] =
∫
A
f(x)dx. Let Y ={yJ}J⊂N be the price schedule repre-

sentation of (m,p) in (1.1). By Slutsky symmetry of V defined in (1.8), we have
∂Dj
∂m

= − ∂2V
∂pj∂m

= ∂D0
∂pj
.

Step 1: When m ≥ 0, from (5.2) we observe that:

i) For any J ⊂ N , when m increases, pJ + m also increases, therefore the set

AJ(Y) shrinks, i.e. ∂M(AJ (Y))
∂m

< 0. Because Dj =
∑

J3jM(AJ(Y)), we have ∂Dj
∂m

=∑
J3j

∂M(AJ (Y))
∂m

< 0, implying ∂D0
∂pj

< 0.

ii) Because D0 =
∑

J 6=∅M(AJ(Y)) = Dj +
∑

J 63jM(AJ(Y)), we have ∂D0
∂m

=
∂Dj
∂m

+
∑

J 63j
∂M(AJ (Y))

∂m
<

∂Dj
∂m

= ∂D0
∂pj
.

iii) For any J 63 j, when pj increases, the set AJ(Y) expands, and therefore
∂M(AJ (Y))

∂pj
> 0. Because D0 = Dj +

∑
J 63jM(AJ(Y)), we have ∂Dj

∂pj
= ∂D0

∂pj
−∑

J 63j
∂M(AJ (Y))

∂pj
< ∂D0

∂pj
=

∂Dj
∂m
.

Step 2: When m ≤ 0, from (5.3) we observe that:

i) m = −s only affects Aj(Y) for any j ∈ N . When m(< 0) increases, s(=

−m > 0) decreases, and set Aj(Y) shrinks, i.e. ∂M(Aj(Y))

∂m
< 0. Because ∂Dj

∂m
=∑

J3j
∂M(AJ (Y))

∂m
=

∂M(Aj(Y))

∂m
< 0.

ii) ∂D0
∂m

=
∑

J 6=∅
∂M(AJ (Y))

∂m
=
∑

j∈J
∂M(Aj(Y))

∂m
<

∂Dj
∂m

.

iii) For seller j, when pj increases, every AJ(Y) where J 3 j shrinks, and there-
fore ∂Dj

∂pj
=
∑

J3j
∂M(AJ (Y))

∂pj
=

∂M(Aj(Y))

∂pj
+
∑

J3j,|J |>1
∂M(AJ (Y))

∂pj
<

∂M(Aj(Y))

∂pj
. Now

focus on Aj(Y) in (5.3) and we observe that xj ≥ pj + max[−s, xk − pk],∀k ∈ jC .
Therefore ∂M(Aj(Y))

∂pj
≤ ∂M(Aj(Y))

∂m
=

∂Dj
∂m
, implying ∂Dj

∂pj
<

∂Dj
∂m

.�

Alternative Proof of Lemma 1 - Parts (ii) and (iii) - in the Main Text
Using “Bundle Demand” ii) When m > 0, for any J 3 j, all the possible

situations when the choice of a shopper x ∈AJ(Y) can be affected as pk increases

by one unit:

a) J 3 k but after pk increases, x switches to ∅;
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b) J 3 k but after pk increases, x switches to a bundle J ′ 63 k;
c) J 3 k but after pk increases, x switches to another bundle J ′ 3 k;
d) J 63 k but after pk increases, x switches to another bundle J ′ 63 k;
e) J 63 k but after pk increases, x switches to a bundle J ′ 3 k;
f) J = ∅ but after pk increases, x switches to a bundle J ′ 6= ∅.
Because all other prices remain unchanged, e) and f) clearly are impossible as

results of a price increase. d) is also impossible as no incentive compatible constraints

between any two bundles that do not contain k are changed. For the same reason

with respect to two bundles that both contain k, c) is also impossible.

J ′ in b) must be the bundle that excludes only k from J , i.e. J ′ = J\{k}, because
an increase in pk only affects the incentive compatibility constraint between these

two bundles, when one of them is J . Therefore, even though b) is possible, it does

not affect Dj as both J and J ′ contain j.

Therefore only switching by shoppers of the kind in a) may induce some change

in Dj. From (5.2) we observe that a) only occurs when the following participation

constraint is binding for a bundle J that contains both j and k, and an increase in

pk tightens this constraint.∑
l∈J

xl ≥ pJ +m =
∑
l∈J

pl +m = pk +m+
∑

l∈J,l 6=k

pl

Therefore demand segments of such bundles (that contain both j and k) all shrink

when pk increases. In fact, we have
∂Dj
∂pk

=
∑

J3j,k
∂M(AJ (Y))

∂pk
< 0.

Note that, besides a) through f), the only other possibility for Dj to change as

pk does is:

g) When x ∈AJ(Y) where J 63 j, J 3 k but after pk increases, x switches to a
bundle J ′ 3 j, J ′ 63 k. However, this would require that the IC constraint between
J and J ′ be affected by pk, and there exists no such bundles in (5.2).

iii)Whenm < 0, we also have the possibilities from a) through g) as in ii). From

(5.3), we observe that only g) is now a valid possibility, and the switching happens

between single-seller bundles {k} and {j}. An increase in pk relaxes the following
IC constraint between them, in favor of bundle {j}: xj − pj ≥ max[m,xk − pk].

Therefore ∂Dj
∂pk

=
∂M(Aj(Y))

∂pk
> 0.�
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Proof of Proposition 2.1 In (7) in the main text, let p∗j = p∗j(m,p−j) and take

partial derivative with respect to m on both sides, we have

∂Dj

∂m
+
∂Dj

∂pj

∂p∗j
∂m

+
∂Dj

∂pj

∂p∗j
∂m

+ (p∗j − cj)
∂2Dj

∂p2
j

∂p∗j
∂m

+ (p∗j − cj)
∂2Dj

∂pj∂m
= 0.

∂p∗j
∂m

= −
(p∗j − cj)

∂2Dj
∂pj∂m

+
∂Dj
∂m

2× ∂Dj
∂pj

+ (p∗j − cj)
∂2Dj
∂p2j

.

By Lemma 1.2 we know ∂Dj
∂m

< 0, ∂Dj
∂pj

< 0. By Slutsky symmetry of V defined

in (1.8), we have ∂2Dj
∂pj∂m

= ∂2D0
∂p2j

. Therefore
∂p∗j
∂m

< 0 when ∂2Dj
∂p2j
≤ 0 and ∂2D0

∂p2j
≤ 0.

For k 6= j, take partial derivative with respect to pk on both sides of (7), we have

∂p∗j
∂pk

= −
(p∗j − cj)

∂2Dj
∂pj∂pk

+
∂Dj
∂pk

2× ∂Dj
∂pj

+ (p∗j − cj)
∂2Dj
∂p2j

.

Therefore
∂p∗j
∂pk

< 0 when ∂Dj
∂pk

< 0, ∂
2Dj
∂p2j
≤ 0 and ∂2Dj

∂pj∂pk
≤ 0.�

Proof of Proposition 2.2 Condition (10) in the main text definesm∗({pk}k∈N , {βk}k∈N).

Take partial derivative with respect to βj and we have∑
k∈N

βk(pk − ck)
∂2Dk

∂m2

∂m∗

∂βj
+ (pj − cj)

∂Dj

∂m
+ 2

∂D0

∂m

∂m∗

∂βj
+ (m∗ − c)∂

2D0

∂m2

∂m∗

∂βj
= 0.

∂m∗

∂βj
=

(pj − cj)(−∂Dj
∂m

)∑
k∈N

βk(pk − ck)∂
2Dk
∂m2 + 2∂D0

∂m
+ (m∗ − c)∂2D0

∂m2

. (5.4)

By Lemma 1.2, ∂Dj
∂m

< 0 and therefore the numerator is positive.

We want the denominator of (5.4) to be negative such that ∂m∗

∂βj
< 0. Using

σ0 = −∂D0/∂m
D0

, the optimal (p∗j − cj) from (8), and optimal (m∗ − c) from (12) (of

the main text) in the denominator of (5.4), we have∑
k∈N

βk(pk − ck)
∂2Dk

∂m2
+ 2

∂D0

∂m
+ (m∗ − c)∂

2D0

∂m2

=
∑
k∈N

βk ·
pk
εk

∂2Dk

∂m2
+ 2

∂D0

∂m
+

1−
∑
k∈N

βk ·
ηk
εk

σ0

∂2D0

∂m2
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=
∑
k∈N

βk
εk

(pk ·
∂2Dk

∂m2
− ηk
σ0

∂2D0

∂m2
) + (2

∂D0

∂m
− D0

∂D0/∂m

∂2D0

∂m2
)

=
∑
k∈N

βkηk
εk

(− D0

∂D0/∂pk
· ∂

2Dk

∂m2
+

D0

∂D0/∂m

∂2D0

∂m2
) + (2

∂D0

∂m
− D0

∂D0/∂m

∂2D0

∂m2
)

= D0[
∑
k∈N

βk ·
ηk
εk

(
∂2D0/∂m

2

∂D0/∂m
− ∂2Dk/∂m

2

∂Dk/∂m
)− (2σ0 +

∂2D0/∂m
2

∂D0/∂m
)].

Therefore the necessary and suffi cient condition for ∂m∗

∂βj
< 0 is exactly condition

(2.1). Given that βj = gj(αj), g′j > 0, ∂m
∗

∂αj
has the same sign as ∂m∗

∂βj
.�

Proof of Corollary 2.3 Condition (2.1) clearly holds when condition (2.2) does.�

Proof of Proposition 2.4 Condition (10) in the main text definesm∗({pk}k∈N , {βk}k∈N).

Take partial derivative with respect to pj and we have

βj
∂Dj

∂m
+
∑
k∈N

βk(pk − ck)(
∂2Dk

∂m2

∂m∗

∂pj
+

∂2Dk

∂m∂pj
)

+2
∂D0

∂m

∂m∗

∂pj
+
∂D0

∂pj
+ (m∗ − c)(∂

2D0

∂m2

∂m∗

∂pj
+

∂2D0

∂m∂pj
) = 0.

∂m∗

∂pj
= −

βj
∂Dj
∂m

+
∑
k∈N

βk(pk − ck) ∂2Dk
∂m∂pj

+ ∂D0
∂pj

+ (m∗ − c) ∂2D0
∂m∂pj∑

k∈N
βk(pk − ck)∂

2Dk
∂m2 + 2∂D0

∂m
+ (m∗ − c)∂2D0

∂m2

. (5.5)

Note that the denominator here is exactly the same as that of (5.4) in the Proof

of Proposition 2.2, which is negative whenever condition (2.1) holds.

By Lemma 1.2, ∂Dj
∂m

< 0, ∂D0
∂pj

< 0. By Slutsky symmetry of V defined in (1.8),

we have ∂2Dk
∂m∂pj

= ∂2D0
∂pk∂pj

, and ∂2D0
∂m∂pj

=
∂2Dj
∂m2 . Therefore, when m∗ ≥ c, ∂

2Dj
∂m2 ≤ 0, and

∂2D0
∂pj∂pk

≤ 0, the numerator here is also negative, which implies ∂m∗

∂pj
< 0.�

Proof of Lemma 3.1 It follows from the Slutsky symmetry of V ′(·).�

Proof of Proposition 3.2 By Definition 3 and Lemma 5.2, we first derive the

allocation induced by R = (m,p,e, n), as summarized in the following lemma.

Lemma 5.4 (Allocation under Access Discount) The allocation {AJ(R)}J⊂N
induced by the two-part tariff with an access discount R = (m,p,e, n) in (3.1) sat-
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isfies, for any J ⊂ N ,

AJ⊂N,0<|J |<n−1(R) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC ;
∑
j∈J

xj ≥ pJ +m;

and
∑
k∈K

xk ≥ pK − e,∀K ⊂ N, |K| ≥ n− |J | , K ∩ J = ∅},

AJ⊂N,|J |=n−1(R) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk ≤ pk − e,∀k ∈ JC ;
∑
j∈J

xj ≥ pJ +m},

AJ⊂N,|J |=n(R) = {x ∈ In|xj ≥ pj − e, ∀j ∈ J ;xk ≤ pk,∀k ∈ JC ;
∑
j∈J

xj ≥ pJ +m− e;

and
∑
h∈H

xh − pH ≥
∑
k∈K

xk ≥ pK ,∀H ⊂ J,K ⊂ N,K ∩ J = ∅},

AJ⊂N,|J |>n(R) = {x ∈ In|xj ≥ pj,∀j ∈ J ;xk ≤ pk,∀k ∈ JC ;
∑
j∈J

xj ≥ pJ +m− e}.

This allocation is illustrated in the following figure.

(On the Left: View from Origin) (On the Right: View Facing Origin)

Figure 4. Allocation under Access Discount

(n = 3,m = 0.2, pj= 0.4, e = 0.1, n = 2)

A comparison between Figures 2 and 4 clearly shows the changes in allocation

when the platform offers an access discount.

The partial derivative of π(m,p,e, n) with respect to e is:

∂

∂e
π′(m,p,e, n) =

∑
j∈N

βj(pj − cj) ·
∂Dj

∂e
+ (m− c) · ∂D0

∂e
−D(|J |≥n) − e

∂D(|J |≥n)

∂e
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When it is evaluated at (m∗, {p∗j}j∈N ,e = 0, n), by (3.3) we have:

∂

∂e
π′(m∗, {p∗j}j∈N ,e, n)|e=0

=
∑
j∈N

βj(p
∗
j − cj) ·

∂Dj

∂e
+ (m∗ − c) · ∂D0

∂e
−D(|J |≥n)

=
∑
j∈N

βj(p
∗
j − cj) · (−

∂D(|J |≥n)

∂pj
) + (m∗ − c) · (−

∂D(|J |≥n)

∂m
)−D(|J |≥n)

= D(|J |≥n)[
∑
j∈N

βj
p∗j − cj
p∗j

(−
∂D(|J |≥n)

∂pj

p∗j
D(|J |≥n)

) +
m∗ − c
m∗

(−
∂D(|J |≥n)

∂m

m∗

D(|J |≥n)

)− 1].�

Proof of Lemma 4.1 It follows from the Slutsky symmetry of V in (4.3).�

Proofs of Lemma 4.2, and Propositions 4.3 and 4.4 They are the same as

those for their counterparts in the main text.�

Proof of Lemma 4.5 Pr[q∗(θ,m,p) > 0] = D0(m,p). Assumption A2 implies

that given (m,p),

∂

∂pj
(
q∗j (θ,m,p)

D0(m,p)
) ≤ 0⇔

∂q∗j
∂pj
·D0 ≤

∂D0

∂pj
· q∗j (5.6)

By definition, Dj(m,p) ≡
∫

Ω
q∗j (θ,m,p)dF (θ) which implies ∂Dj

∂pj
=
∫

Ω

∂q∗j
∂pj
dF (θ),

and by taking expectations with respect to θ on both sides of (5.6) we have

∂Dj

∂pj
·D0 ≤

∂D0

∂pj
·Dj ⇐⇒

−∂Dj

∂pj
· pj
Dj

≥ −∂D0

∂pj
· pj
D0

(whenever pj ≥ 0)⇐⇒

εj ≥ ηj.�

Proofs of Corollaries 4.6 and 4.7 They are the same as those for their coun-

terparts in the main text.�
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