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This online supplement is composed of two parts. Section C contains the proofs of the technical

lemmas and theorems in Appendices A and B. Section D provides some additional simulation results.

C Proofs of the Technical Lemmmas and Theorems in Appendices A
and B

Proof of Lemma A.l. From the principal component analysis (PCA), we have the identity

(NTF*) ' XX'F=FD. Pre-multiplying both sides by T~ F” and using the normalization T F'F =

Ig yield T-1E’ (NTG*) ! XX'F = D. The lemma follows provided D =plimD, which we show below.
Noting that X = (FOAY +¢) o G, we have

D = T (NTP)

= T'F'(NT 2) [(FOAY +¢) oG] [(FOAY +¢) oG] F

— TF(NT@) [ (FOAY) o G] [(FOAY) 0 G)' F+ T 'F (NTG®) ' (0 G) (e 0 G)'F
TV (NT@) T [(FPAY) 0 G (e 0 GYF + T F' (NT@) ™ (e 0 G) [(FOAY) 0 G]' F

'XX'F

Dn711+ Dyr2 + Dyrg + DNrogy Say.

We first study Dnr,1. Noting that E(G) = ¢lpxny with 1pxny being a T x N matrix of ones, we

make the following decomposition

-DNT,l — T*lﬁw/ (NTqQ)—l [(FOAO/) o G] [(FOAOI) ° G]/F
2 7770 AOAO 770 F7
_q_FFAAFF 1 o1 0A0n A oron A1 =
= Syt (NTP) [(FA )OG} [(FA )OG]F

+qi2T—1F’ (NT@) ™ [(FOA”) 0 G| (FOA™)F + q%T_lﬁ’ (NTG) ™ (FA”) [(F°A”) 0 G F

= Dnra1+ Dnri2 + Dnrias + Dnroia

where G = G—F (G) . By the i.i.d. property of g;;, we can readily show that §/q—1 = Op((NT)~1/?).
By Lemma A.3(ii) in Bai (2003), F;\fo AO]IVAO FCOFF 2, D. This result can be strengthened to HF;\];O AO]/VAO F;F

—D|| = Op(§,-) under our assumptions. Then |[Dyr.11 — D|| = Op(§ ).




For Dnr,12, we have
IDxtsall, = (VTF) s (1748 (5047 0] [(7°%) o ] )
S tr <T71F~1/F> (NT(j?)_l )\max ([(FOAO/) o G:| [(FOAOI) o é] />

— R(NT@) ™ ||(F°A") 0 G i

sp

where the last equality follows from the fact that tr(T—'F'F) =tr(Ig) = R. Let ) p = max; {)\?’Fto{
and Z = [(FOAY) o G]/cxr. Let Zi; denote a typical element of Z : Zy = AYF? (g1 — q) /ea.r- By
construction, max;|Z;| < 1. We want to apply Lemma C.4 by conditioning on F = o { F?, AO} ,

the sigma-field generated by F° and A°. By straightforward moment calculations

L (R’ :
c = max ZE t|‘7: = max ZTE(Q#_Q)
t=1 MNF
1/2
C VAT g < 2 IR
C\F C\,F
and
N (07 70\ 2
A F
g = max ZE Z2|F) maXJZ(Zc?—t)E(gitqf
i=1 A\ F

— \/ 1—(] /FO/AO/AOFO CFTHAO/AOH1/2

C\F C\F
where ¢y vy = max; H)\?H and cpr = maxy HFtOH . It follows that

H(FOAO/) 1/2

= Op (max {ex v [ FF||2 crr [|AA°]"* cx plog(N v T) }).

This result, in conjunction with the fact HFO’FOH =0p(T), HAO’AOH =0p(N),ean =0p (N71/4)) 7
crr = Op (T72/4)) ,and ¢y p = Op ((NT)1/4) under our moment conditions on /\? and F? in As-

sumption A.1, implies that

A

1
IDnTa2l < VR|Dnrazly, = <ﬁ max {C?\,NTa ¢t N, & p [log(N v T)]z})

< Op {% max {N%/QT, T%/2N, (NT)Y/2 [log(N v T)]Q}} = Op(6327)
where 7 = 71 V7. Then || Dnrasl| = [|[Dyraall < {IDxrull IDyriel}Y? = Op(6yy 7?) by the

matrix version of Cauchy-Schwarz (CS) inequality. Therefore we have || D71 — D| = Op((SJ_V(Tl_W 2) ).

Noting that D72 is positive semidefinite (p.s.d.), we have

IN

DNzl (NT@) ' tr (T‘lﬁ” (c0G)(co G)'F) < tr (T—IF'F) (NTE) ™" Apax (60 G) (£ 0 G))

= R(NT@) ' |eoGl2,



where the first inequality follows from the fact that [|A|;, = Amax (4) <tr(A) for any p.s.d. symmetric
matrix A, the second inequality follows because tr(A’BA) <tr(A’A) Amax (B) for any symmetric p.s.d.
matrix B and conformable matrix A, the equality follows because tr(T~'F'F) =tr(Iz) = R. Note
that

leo Gl < |

0G| +le0B(@ly=[eo6| +alel,,.
Sp Sp

By Assumption A.2(i), [le[ly, = Op(V'N ++/T). As in the analysis of ‘(FOAO’) oG
apply Lemma B.1 by conditioning on € to obtain with high probability

|

It follows that | Dzl < VE[Dyrall, < (NT)™ Op (N + T +(NT) log(N v T ) = 0p (637"
and [|Dnre| < VR||Dnrel, = op(0x2™) and | Dyrs| = [ Dnrall < {I Dyl | Daral}? =
op (5]_\/(7{_7/ 2)) by the CS inequality.

In sum, we have Hf) — DH — OP((S]_V(%—’Y/Q))' m

, we can readily
sp

g0l

o Op <max{\/ﬁ, \/T,H%%X’Eitflog(NVT)}> <Op (\/ﬁ+ VT + (NT)1/4log(NvT)> .

Proof of Lemma A.2. (i) From the method of PCA, we have
(NT@) ' XX'F = FD, (C.1)
Using X = (FOAY +¢) oG and G = E(G) + G = qlyyn + G, we make the following decomposition
XX’
[(FOAY +¢) o G] [(FPAY +¢) o G]I

= [(FOAY) o G] [(FPAY) 0 G] + (¢ 0 G) (e 0 G) + [(F'AY) 0 G] (e 0 G)' + (e 0 G)' [(FOAY) 0 G]'
= PFOAYAOFY 4 (C.2)

where dyr = [(F'A”) 0 G| [(F0A) o G L g(FOAY) (A7)0 G "+q [(7°A%) 0 G] AOFY 4 (e 0 )
(g0 G) + [(FOAY) 0 G] (¢ 0 G) + (¢ 0 G) [(FOAY) 0 G]". Premultiplying both sides of (C.1) by
(%AO/AO)U2 X%FOI and plugging (C.2) yield

2 07 A0\ 1/2 0’ 170 0/ A O 0 070N 1/2 0
q* (AYA FVF AYA FVF - [AVA FUF\ -
L) (5 () () o= (559) T (5F) 2 oo

- Lo\ 1/2 -
where dy1 = q% (%) %F VdnrF. Following the analysis of Dyr’s in the proof of Lemma A.1,

_ o Lo\ 1/2 / Lo 1/2
we can readily show that HdNTH = Op(éN(:,{ 7/2)). Letting By = g—; <%) (%) (%)

/ 1/2 ! - ~
and Ryr = (AONAO> <F0TF> , we can write (C.3) as follows: [Byr + dNTRfV%p]RNT = RytD.
Hence, each column of Ry7 is non-standardized eigenvector of the matrix Byt + JNTRX,%. Let

DNT be a diagonal matrix consisting of the diagonal elements of R;VTRNT. Denote the standardized
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eigenvector Yy = RNTD 12 Hence, we have [Byr + JNTRJ_VIT]TNT = YnpD~!. That is, D
contains the eigenvalues of B NT—i—J NTR;VIT with the corresponding normalized eigenvectors contained

in Y 7. It is trivial to show that with high probability
|Byr +dyr Ry — B]| = 0p(031 "), (C4)

where B denotes the probability of By, i.e., B = ZI/QZF 21/2.
Let T denote the probability limit of Y. Note that Y/ = Y~! by normalization. By (C.4)

and the eigenvector perturbation theory that requires distinctness of eigenvalues (see, e.g., Stew-
ard and Sun (1990, Ch. V), and Allez and Bouchaud (2013)), ||[Ynxr — Y| = Op(é_(l_V/Q)) by

NT
(C.4) and Assumption A.1(iv). This, in conjunction with the definition of Ry, implies that
! i ’ -1/2 , -1/2 o ;-
FOTF = (%) Ryt = (AONAO> TNTD%% satisfies H% 1/2TD1/2H — (1 ’7/2))

The result follows by noticing that Q' = Z_I/ >y pi/2,
(ii) By Lemma A.1, (i) and Assumption A.1(ii) , we have

H = (NflAOIAo)—l <T*1F0'F> Hl_ EAO(Z—l/zﬁrDlﬂ)Dq +Op(5)

(iii) The proof follows closely that of Lemma B.1 in Bai (2003) and Theorem 2.1 and thus omitted.
The major difference is that we now use the decomposition in (A.1) and the fact that g;; are i.i.d.
Bernoulli(q) and independent of F°, A® and .

(iv) The proof is analogous to that of Theorem 2.1 and thus omitted.

(v) The claim follows from (iv) provided that we can show that ZtT (Fy — HF))FYg;y =
Op (5 ) The proof of the latter result follows closely that of Theorem 2.1 (or Lemma B.2 in Bai
(2003)) and thus omitted.

(vi) By (v), the claim follows provided that %ZtT:l(Ft — H'F))FY = Op (63%) . We can prove
the latter result by using analogous arguments as used in the proof of Theorem 2.1 and Lemma B.2
in Bai (2003).

(vii) Using Fy = (Fy — H'F?) + H'F?, we make the following decomposition

T T T
1 ~, _ ~/1 0 10/ 75 1 ~ =10 ~ ~ O
?;F tgi—q) = HsztFt H(git—q)+?§::(Ft—Hp;)(Ft_HFt)(git_q)

1

+ (B, — HEYFYH (93 — q) + H’ — H'FY (91 — q)

N|
Mﬂl;r
||Mﬁ

t
4
= Z dlt'
=1

By Theorem 2.1 and Lemma A.2(iv), do; = Op (5]}%) . By Lemma A.2(vi)-(vii), d3: = Op (5]*\,2T) and
dy = Op (65%) - Then = S0 FF(giu —q) = H'2 30 FPFY H(git — q) + Op (637) -

Il
—
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(viii) As in (vii), we can also show that & 3/ RF} = H'~ S| FOFYH + Op (65%) - This, in
conjunction with the fact that = S I B F} = Ig, implies that H'2 T S FOFYH = Ir+Op (6n7) -
Premultiplying and postmultiplying both sides by (H’)~! and H~! in order yields FFVFO = (HH")~'+
Op (65%) - Tt follows that HH' = (AFYF0)™1 + 0p (63%) . M

A Cautionary Note. We can prove Lemmas A.3-A.5 for £ = 1 based on the results in Theorems
2.1-2.2. When these lemmas hold for £ = 1, Theorems 2.3-2.4 also hold for £ = 1. With the results
in Lemmas A.3-A.5 and Theorems 2.3-2.4 for £ = 1, we can prove them to hold for ¢ = 2. This
procedure is repeated until convergence. Since the verification of Lemma A.3 for £ = 1 is different
from the general case with £ > 2, we first prove it for £ = 1 in detail and then prove it for ¢ > 2 after

we prove Lemmas A.4-A.5.

Proof of Lemma A.3 (¢ = 1). (i) Noting that (th = DO-1L (0 )’FONLq SV N eitgie + X' E (9 — q)]
max; Hgf)FtH < Op (1) maxy HN fvl A [Eztgug + NFEY (g — ¢ ] H = 0Op ((N/lnN)—l/Q) by Lemmas
A.1-A.2 and Assumption A.5(i). Similarly, max; qu’i <Op( + ZZ;I EP [eingis + N'FL (gi — q)] H
=Op ((T/In T)*l/z) by Lemmas A.1-A.2 and Assumption A.5(ii).

(ii) By the decomposition in (A.1),

1) max;

(0 ~(0 3 ~(0) + (0)
7“571)5 Ft( ) HOF) — Gpy = a1 + az + as + ase + are + (a3t + agt — Ppy)-

Following the proof of Theorem 2.2(i) and using Assumption A.5 and the fact that max; ||Fy| =
Op (TVI/"‘), it is easy to show that

max||ay| = Op <T‘1/25]*V1T + T—”W“) , max [lay|| = Op (670 N),
max law]| = Op <T71/45]_\,2T> for 1 =4,5,
max agl| = Op (T2 T + 771 +9m/4),

and max; Hasst + agt — &5?1“ = Op (51_\,2T lnN). It follows that max; Hfﬁ?iH = OP(T71/45—2 InT +

T-131/4), For 7*[(\02, we have

7O = 30— (HO)N = 30 = Boy + Bas + Bss + (Bui + Bus — o),

where By;’s are defined in the proof of Theorem 2.2(ii). Following the proof of Theorem 2.2(ii) and

using the fact that max; H)\?H =0Op (N72/4), max; % Zfil €2 =0p(1),and §—q = Op((NT)_l/Q)
we have by Theorem 2.1 and Lemma A.2

max | Bail| = Op (3330 N) , max | Byl = Op (N'2/4532 m N ), max||Byi]| = Op (NT)~H/2N7/4),

5(0)

and max; ||B1; + By — g%s\o)z =0p (5]*\,2T In N) . It follows that max; Al = Op (NV2/45R,2T In N) .




(iii) By (i) and the fact that max, [|[F?|| = Op (T71/4) and max; H)\?H =0Op (N72/4) , we have

max H?’]l it

+(0)

_ max HFOIH(O ¢Az )\0/( ) ¢ Ag/(ﬁ(o)/)fl,ﬁ}?% +Ft0/ﬁ( ) 1(\2

N{

il

= Op(T/*((T/InT)~Y2 4 N2/45 2 In N)) 4+ Op(T/A((T/ InT)~Y2 4 T/ 2 In T + T 1301/4)
— Op(Syy "’ InN).

< HH(O H max HFUH {maxHqﬁ H +r } + H H maXH/\OH {max H(b(o)H _,_m?X

Similarly, we have

O3 (0) | (0)
= H;E%XH%,MFHF%@ Ft+<75Ft Ai 5\2 %%H

0
max o)
< Op ((N/ 1nN)—1/2(T/1nT)—1/2) +O0p(T/InT)~1/2 (Tv1/451—vsz T +T—1+371/4>)
+0p ((N/ I N) TN 252 m N ) + Op (T35 T + T/ )
= Op(6y>InN).

(iv) Note that

A0y —1 1 Al +(0)
[H] Z(ﬁ/\z EitGit

N
1=1
1 N T
= 57 2 2 Y [engis + NFY (g — 0)] cingie
i=1 s=1
1 N T 1
= NT Z Z FSE(gzsgzt )GisGit + N_ FSO [eisgit — E(€iscit)] gisgit

i=1 s=1

N T
1
F0 ON (9is — @) eugin + o D D FOFIAY (9is — 0) e (930 — a)
i=1 s=1 i=1s=1

= Op (T FA LSRN + S5 N+ 03E N ) = Op (T751/4 4 532 m ).

Then max; H% Zfil &S\mﬁitgit” =0Op (T_1+71/4 + 5;\,% In N) .
DI ¢>A ZAO/gzt 3 o S XY [eisgis + PN (gis — 0)] Gir | -
Using git = (1 — q) — (git — q) , we have

N T
1
N— Z Z FO/ 515915 + FO/AO(gZS - q)] git

Observe that ‘ H

— H O

=1s
N T
Z Z AOFO,@ZSQZS Z Z )\OFOIFOI)\O gzs o q)
i=1 s=1 i=1 s=1
1 N T
_N_ Z Z )\OF Ezsgzs git — Z )\OFOIFO/)\O gzs - Q) (git - Q)'
=1 s=1 =1 s=1




It is easy to show that the first two terms are Op(5]7\,2T) by Chebyshev inequality. The third term is
Op (652 In N) by Assumption A.3(iii). For the fourth term, we have

max || T ZZAOFO,FO,)\O gis — 4)(git — q)
=1 s=1
1 N 2 2
= max NTZ Z NFYFY N (gis — q) (9 — q) +WZH>‘?H m?XHEfOH
=1 s=1,s#t i=1

= Op(0y2InN)+Op(T~1HM/2),

Then HH N Z =1 ¢A z)‘OIgzt = Op (T_1+71/2 + 51Q2T InN).

Noting that 721(&02 = 5\(0) — (H©)=1)\9 - &55\02 = By; + B3; + Bsi + (B1i + Bai — fAbS\O?L% we have

N
1 ~(0
max E )\0 git|| < max || - E [321‘ + Bsi + Bsi + (B1i + Bai — ¢5\;)] A Git |
—1 i=1

where By;’s are defined in the proof of Theorem 2.2(ii). Using g+ = (1 — q) + (git — q) ,

gw)H | N
maX ZBQz)\ Jit = Tmtax WZZ EzsgzsA Jit
1=1 s=1
1_q N T 1 N T
< Op (1){ W;;Fgais%s/\?/ + max WE;FSEisgiM?’(git—Q)

In addition,

N T
. . o A
max ZB&)\ git|| = max NTG SN EO (H(O)/FS—F§O)) (HO) TN i A Gt

=1 s=1

1= 20 (£ N

< Op(1)max fZFs(O) (H(O)IFSO —FS(0)> gis| = Op (657 InN),
‘ s=1
and max; ||+ SN Bsid G| < % lg — q H[I:I(O)’ -1 ‘ + SV H/\?H2 = Op((NT)~'/?). Lastly, noting

that the difference lies between Bi; + Ba; and qAﬁng)Z is controlled by |¢ — ¢|, we can readily show that
maxy H% SN (Byi + Bai — 6}5\ DAY Git
= Op (657 InN) .

(3

= Op((NT)~1/2). In sum, we have max; HH(O yL valr[(x))\o'gzt

}



. NOR .
(v) Noting that qS%i = D)~ %F( )'FON%Z Ziil A [5itgit + A ED (giy — q)] , we have

T
T Z Olgzt

ma

Mz

< Op (1) max LZ

T
N A? gjtgjt + >‘ Ft (gjt — Q)] Ft Git

t=1j

T

N

1

IA

Ft €t9jt it

7

an

Op (1) max NL Z

(2

1 0 07\ 07 10 ~
+Op (1) max ~NT tzlzl)\th /)\j,Et (95t — ) Git
i
= Op (O§5InN) + Op(N~1H2/2),

Analogously, by the decomposition in (A.1) we have 4 T Zt 1 A Ft )Fto’ Git = % Zle[alt +agt + asr +
ast + a7t + (azt + agr — qﬁF,t)]FtO’ git- Following the proof of Theorem 2.2(i) and using Assumption
A.5 and the fact that max; H)\?H = Op (N72/4), it is easy to show that max; ||% ZtT:1 a1 FY Git|| =
Op (T7V25 + T7Y) ,max; || & ) a9t FGi|| < maxy ||as|| Op (1) = Op (5;&; In N), max; ||+ 3/,
aunFG|| = Op (03510 N) for | = 4,5, max; ||+ 0, aneFYGu|| = Op (5% lnT+T ), and
max; || 7 3y [ase + a6 — &gi]FP’?itll = Op (Sy7InN) . It follows that max; || 3 TF,t VEy Gl
= Op (653 InN) .

2
. N 0
(vi) Note that % doict ‘ nlt)H <% ZZ 1 ‘ 77g at|l tw Zz 1 Hné z)t

bounded above by Op(§y3-(In N)?) by (iii). For the first term, we have

nmx_.E;Hln

, where the second term is

2
maX—ZHFP’H O+ AL O TLGE) + XY (HO) D) + PO

IN

o e S
=1
1 g

= Op(T~""/2 L N~ 1InN).

0
ol ]

(0 1 & 0112
B}

It follows that + SN ‘ Nyt H p(T71+71/24 N~ 1n N). Similarly, we can show that max; + LT ant &
= Op(N~H72/2  T-1In N).

(vii) Let ky = 1+ HFPH . It suffices to show that ﬁZle Ziil fit(ﬁ[{%) = Op (63%) for
I =1,2. By (iii), 77 ZtT 1 Zf\i nt(ngoz)t)g < max; ¢ ]|77201t||2 1 ZtT 1Rt = OP((S]_VZ;(IH N)?). In addition,
¥r S 121 R0 < st S S IR H OS2 +INY () Gyl [P+ N (O 1740 P+
||FtO,H A[(&” y=4{i1+Ji2+ Ji3+ Jia}. For Ji 1, we have

R 2 1 T
T e 5 2

Ji1 <

_OP )7



as we can readily show that + Zl 1 HqﬁA ZH = Op (T™!) . For Jy 2, noting that (ﬁ(o)’)*lf)(o)*l%ﬁ'm)’FO

= (FAYA%) " and HFAYA? -0 =0 (N _1/2) , we have

| T N
Jig2 = N_Z
—1

1
)\0, AOIAO) lN_q Z )\(J) [5thzj + >‘ Ft ( gjt — Q)]
j=1

2

< =0p (5NT)

o
2

N
N Z 5ztgzt + )\ FO (gzt - Q)]

Similarly, we can show that J;; = Op (51}%) for [ = 3,4. Then NlT ZtT 1 va 1 mt(ngol)t)Q =0Op (5]}2T)
(viii) Note that g7 >(_; 305, N\ gis = S0, NT Lomt Lie FO)‘O/nl isJis = >ty Jog. For

J2.2, we can use the uniform bound in (iii) and show that Jy; = Op (5N2T In N) . For Jy 1, we have
Tt = s Sy S FONY (FHOG, + N (HO) g, + AV (HON 50 + FYHO)) g =
Zizl J2.14- Let )\?l and FSOZ denote the [th element of )\? and F?, respectively. Let J2.14 (1,7) denote
the (I,7)th element of J5 14 for a = 1,2. Noting that g;s = (1 — ¢) + (¢ — gis) , we have

0) _
¥ Z FOLEYH©) Z OGN
=1

NT Z FtrFtO/H 0 Z <Z5 —q) )‘?l

=1
= Jola (l, r, 1)+ Ja1a (1, 7,2).

| J2,11 (2, 7)||

NT Z FtrFtOIH(O) Z <75 (9t — Q))\?l
=1

Fist, Joa (171) < (1— ) |[HO] $ 2L, HF°H2H% SIS
Op(6y%) by the fact that H% SN (}55\0)1-)\0 ‘

=Op(6 NQT) by Chebyshev inequality. For Jy 1,4 ({,7,2), we have

= 0 (V|| &2, da

J271(1 (l7 T, 2) = N Z )‘zl(bA K [ Z Ft Ftr git — ] '|
| X 1/2 . 2 1/2
< || O)H {NZHA? (O) } ~ ZFt F (gt —
i=1 i=1 =1

= Op (Oy) Op(T71/?),

as we can show that % Zivl H)\QH2 ‘ CAbS\O)z

O(T™1). Then Jo 11 = Op((5 7). Similarly,

2 2
- N
= OP((SN%F) and % Zi:l E H% Zle FtOFg(git - Q)H =

T N

1 0
=11
N T )
< Z PUBVAS 00 Z o Fﬂ s Z)‘%)‘?/ ¢Ft 9 (g
t=1 t=1 i=1

= Joio (l, r, 1)+ Ja12 (1,7,2).

H HN i= qu Zt [E%tglt+Ft )\O(gzt—Q)])\ ‘

q)




Notlng that & Zt 1 ng DO-1LEOypo L s~ A}q SN N [eingie + AN FL (g1 — q)] F = Op (1)
X NT NT Zt 1 Zz 1 z [Eztgzt + )\0 FO (gzt - Q)] =0Op (51\727“) HJ2,12 <17 r, 1)” =0Op (5]_\[27“) . For J2,12 (l, T, 2) )
we have

Jona (Lm,2) = TZ S (i NZA?A?T 9is =4

9y 1/2
um@wu{% : i {%fl ]

= Op (657) Op(N'2).
So Jao = Op (5N2T) . Similarly, we can show that Jo; = Op (5]}2T) for { = 3,4. Then ﬁ Zstl Zfil FONY
X1;isGis = Op (51_\727“) :
(ix) By (vi) and the fact that % Zfil E H% Zle FOeisgis
T
f Z s €isYis
Op

(T71/?)

(0)

IN

Z A?)\?T gzs -

2
=017,

Z FO Z nzt gztszsgzs

L~ 0. (L5 po
= m?x HN ;mt git (f ZFS 5isgis>
RS (0)y2 v 1 o
{mtaxNZ(mt ) } {NZ

IN

=1

2}1/2

( ) Note that ZS 1 FO Zz 1 Eztgztnls Gis = Zl 1 NT Zs 1 FO Zz 1 Eztgztnl( zlgzs = Zl 1 J3 - We
can readlly bound Jz2t by Op(63%In N ) by using the umform bound for n( ) n (iii). Next,

Jage = 5 S FO I, cugul FO OG0, + X (HO) 6 + A°'<H<°> ) FO’H@“(“)]- =
lel J3.1¢ (1) . Using gis = (1 — ¢)+(q — gis) the fact that FO’H qu ;isa scalar and max; + ZZ 0 th =
Op (1), and (iv), we have

~ Op (T*l/”'h/4 +(N/In N)*W)

= Op (T—HW‘* +(NT/In N)—1/2> .

max J31¢ (1)
T N

~ ~(0
Z Z ufgitFS,H(o)QbE\;gis

=1

=1
T
= s Z FHO Z ¢A i€itgit || + max Z €ztgthb o TH ) Z Z FOFY (g:0 — q)
s=1 =1
1 & LN I 2y 1/2
< N Z: i€itgit|| + mzaX {max — Z Ezt} N ; T ; FSOFSO/ (gis . q)

= Op(T™ 7"/ " L N~ InN) + Op((T/In T)—1/2)op (1) Op(TY?) = Op(T~1+1/% 4 532 In N).
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For J31¢(2), we have by (i) and the fact that max, = Op(N/InN)~1/?),

N Zz 1 /\Z €ititTis

m?X J31¢(2) =

N
0/ i 1
E FO¢ ) 1N§ )\?5itgit§is
i=1

1 Y 1 ¢
‘ Z A €ititTis T Z HFSH
i:l s=1

= Op((N/InN)"Y%)Op(N/In N)~1/?) = Op (652 In N) .

IN

e H max

H max

Similarly, we can show that J3 1, () = Op(él_vQT In N) for [ = 3,4. Then max; ) NT Zs 1 F? Zz 1 sltglmgs)gw
=Op (T "/A 46 InN). 1

Proof of Lemma A.4 ({ =1 and £ > 1). (i) From the PCA, we have the identity (NT)~* X (0 X0 f2(0)

= FO DO Pre-multiplying both sides by T-1F'®’ and using the normalization T 1F@'F© = [,
yield T-1EO(NTY ™ XX'FO = DO, Let £ be the T x N matrix with (¢,7)th element given by

5%—1) = €igit + ngt )gn Noting that X0 = OO 4 agf), we have
DY = 7 EONNTY T (FOAY 4 D) (FOAY 4 Oy )
e al( /(N )" {FOAO/AOFO/+€(Z)€(Z)/_’_FOAO/g(Z)/+€(£)AOFO/}F(Z)
= 5O 4 DY 1 DO 4 pY.

The result follows if we show that (1) lA)ge) = D+ Op(6yInN) and (2) lA)l(z) = Op(6yr1n N) for

[ =2,3,4. Following the proof of Lemma A.1(i) in Su and Wang (2017), ﬁg) = F(?\;FO AOJIVAO FO;(E) =

D+ Op (51_\,'}) . Noting that e = 0 G + n(g_l) o G where G = 174y — G and 77(5_1) has (t,7)th
(6=1)

element given by n;, "/,

|

by

(NT) ™t (T (e 0 G 49D 0 G) (20 G40 0 GY )
Sp

IN

2(NT) e (T FO (20 G) (0 G) FO)
+2(NT) " tr (T—lﬁw(n(f—l) oGV oqy W)) -

Following the analysis of Dy72 in the proof of Lemma A.1, we can show that the first term is
Op(8y [log(N v T)]%). For the second term, it suffices to use Lemma A.3(vii) to obtain the following
rough probability bound

2(NT) t tr (T—1F“)’n“‘1)n“‘”’ﬁ(£)) < o7 HF“)H2 (NT)™! Hn“‘”HQ = Op(057)-

It follows that HDQH < RY/?2 HBQ Dy)) _
sp

{Hﬁg) lA)éZ)H}l/2 = Op(6prIn N)). In sum, we have DO =D+ Op(SyrInN).

(ii) The proof is analogous to that of Lemma A.2(i) with obvious modifications.

= Op(63%(In N)?). By the CS inequality,

o0
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(iii) The proof is analogous to that of Lemma A.2(ii) with obvious modifications.

(iv) The proof follows from that of Lemma B.3 in Bai (2003)

(v) Note that 7 7 Zt 1( H(Z)/FO) =7 Zt 1( H(g)/FO)Eztgzt‘F Zt 1( © I:I(Z)/Fto)nz('f)git-
Following the proof of Lemma A.7(v) in Su and Wang (2017), we can show that the first term
is Op (517VZT In N) uniformly in ¢. By Theorem 2.3 and Lemma A.3(vi), the Frobenius norm of
the second term is bounded above by above by{# [|FO — FOF®||2}1/2{max; T Zf l(nz(f)) W2 =
SN Op(N=V212/4 1(T/1n N)=1/2). Tt follows that 4 Y7 (9~ HOFY)) = Op(N-1/2+7:/457 ),
+5yrInN). |

Proof of Lemma A.5 ({ =1 and ¢ > 1). (i) Note that & Z A Zt =Bri+ N ZZ_ )\077“5 )git

where

2
N Z Aonzt g’Lt - Z Z Aonl lt git = Z Kth'
=1

772” H ~ D ie 1H)\?H = OP(5]_V2T].I1N). For K1, we

By Lemma A.3(iii), maxy ||K1 2| < max;;

make the following decomposition

Kl,lt — N Z)\O [FtO/H (£-1) ¢ A )\0/( ) ¢ )\?/(_H(Z*l)/)*lf%;l) + Ftolﬁ(ffl)/r,q%’zl) git

= Kl,lt( )+ K11 (2) + K16 (3) + K11 (4).

For K 14 (1), we apply Lemma A.3(iv) to obtain max; || K1,1; (1)|| = Op (T”’1/45;V2T InN) . For K114 (2),

we have uniformly in ¢
Ki11:(2) = Z/\O)\O' N i
L or oy fr(e—1yn—1,(=1) 1 & 0407 | ¢ fre—1)y—1, 1)
= (1—Q)NA A (H ) bRy + ﬁZ(Qit—Q))\Mz‘ (H ) Pry
i=1
_ _ A(-1)1-1 L Ae—1) 10 BRPUA) ~1
= (1-q) [PV E G 4 0p(N T I N),

where the second equality follows from the use of g = (1 — q) — (git — q) , the third equality holds
by (i), the fact that max; H% SNV AN (g — q)H = Op (N"Y21nN), and the definition of H~1.

i=1" "

In addition, we have by (ii) and (iv)

(-1
max K1 (3)[| = max ZAO)\O/ lrﬁw,t Gt
#ED _ _
- (Nzw E——
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and

_ o7 £y (4—1) (f 1)y 0/~
m?XHKth @ = max FYH( Z A Git

< Hl?XHFtO/Hm?X :Op(T71/4(51_V2T1nN).

ZlNZ 41)\0/

It follows that uniformly in ¢, %ZZ [ Ne O = Bp: + (1 —-9q) {[ﬁ(é_l)]_l%p(e_l)/Fo ¢J£t )

7 zt
Op(T"/*§ 2 InT + T~1+37/4) and

{b — D 5)]11F“’F012/\

- )= DTIQBr+ (1= )by + Op(T/ 833 T + T 1H12/4),

Zzt

. T {4 T

(ii) Note that % D1 Ftogz(t) = BA,i"‘:lr D1 Ftonz(t )gzt where 7 T Zt 1 Ftomt gzt = Zl 1T Zt 1
Ft0771( G = >.7_, Koiy. By Lemma A.3(iii), we can show that max; || Ko;2|| = Op (657 InN) . Using
the decomposition g;; = (1 — q) + (git — ¢) and Lemma A.2, we can readily show that

Kain = ZFt [FtO’Hf b gb A +A°’(H(4’ )= ¢( 1)

T
= Ko (1) 4+ Kain(2) + Kai1 (3) + Kai1 (4).

+>\0/(H(£ 1)/) ( 1) —l—FtO/I-iT(Z_l)/f/(\Z;l)] it

For K1 (1), we have that uniformly in i,

T T
1-— ap_ 1y~ (E=1 1 A p 1y~ (E=1
Kaia (1) = =2 ST FOFYACDG Y + 2 SRR A6, (ga - )
t=1 t=1
L or 0 7r(e—1) 7 (¢=1) —1/2
= (1—q) = FYF HEGL ) + 0p(NT) /2 1n N)

T
= (1— AT £ 0p(NT) 2 N),

where the second equality follows from the fact that

T

1 ~ g1y~ (6=1)

T Z FtOFtO/H(Z 1)¢A,z’ (git —q)
t=1

IN

1 Z
Z FYF (9it — q)
=

= Op((N/InN)"2)0p((T/InT)"1/2)

Op (maxHqﬁ H) max

and the last equality follows because +FYF0 = [HEDFED1 4 0p(5y%)- By Lemma A.3(v)
and (ii)

A (6=1)

Prt
T
Z tO/gzt

13

Ao 1
o s ()] = AP 7 3ok g

Op (a0 ) ma

&M%

IN

= N240p (53 N 4 NTH/2),




T
(1
mzaXHKgM 3 = max ZFt )\O’ r%t )glt
1 A(£—1 - 4 -2
= Or (m?XH)‘ﬂ’) T;T%,t )Ftolgit = N"2/"0p (On7InN), and
max || Ko (4)]] = max ZFOFO'H“ Dl Vg
¥ Z t 7

< 0 (mpe ) £ 3 0P = 0p 55020

It follows that uniformly in i, 7 LS EP zf =B +(1— q)[ﬁw—l)’]_léﬁ%;l) +O0p (N72/45 2. In N)
and
B = A ZFO ) Bt (L= @) +Op(N /53 N + N1/, m

Proof of Lemma A.3 (¢ > 2). The proof relies on the fact that Lemmas A.3-A.5 and Theorems
2.3-2.4 hold for ¢ — 1.
(i) By Lemma A.5(i)-(ii),

max [b;f;l)H _ m?XHD_lQBF’t—F(l—q)(Ab(F{ZQ)—|—OP(T’YI/ZL(S]_VQTIDT+T_1+371/4)H

< ||D7Q max || + (1 — @) max|fe, 7 || + O (1714632 T + T

= Op((N/InN)"Y2) 4+ Op((N/In N)"Y2) 4 0p((N VT)Y?) = Op((N/In N)"Y/?),
and
max [0 | = max (@) B+ (1 - )dh;” + 0N 53 )|

< (1@ max || + (1 — @) max |65 7| + Op (V72533 m )

= Op((T/InT)™"%) + Op((T/ I T) %) + op((N V1) %) = Op((T/ I T)~H?).

(11) By the decomposition in (A.8), #i; ) = B — At — gut — Gl 4 gy 4

(d275 - gb Fi ) Following the proof of Theorem 2.4(i) and using Assumption A.5 and the fact that
max; ||FY|| = Op(T71/4), it is easy to show that

max Hd%_l)H = OP(T71/25]_\71T + T/, max H&gﬁ_l)H = OP(T71/45]_\,2T),

and max; Hagi 2 A;{;l)H Op(Sy7InN). It follows that max; HrFt H = Op(TM/46 2 InT +
T—131/4), For 7*/(\67;1), we have

NG 1 (6=1) 3 NG NG 2 (6-1)

i = AT @) TN = 0 = B 4 BTV 4 (B - a0,

14



where Bl(f Vs are defined in the proof of Theorem 2. 4(ii) Following the proof of Theorem 2.4(ii) and
using the fact that max; H)\ | = Op(N"2/%), max; % LT €2 =0p(1),and §—q = Op((NT)_l/Q)

we have by Lemma A.4

maXHBM l)H =Op 1/2+72/4(5 Y+ 6 InN), maXHBK 2 H Op (N72/45_ )

= Op(65%In N). Tt follows that max;

and max; || B Z ¢Az ’ A(e )H— p(N72/45 2. In N).

(iii) The proof is similar to the £ = 1 case by replacing the superscrlpt 0 by £ — 1 throughout the

proof.

(iv) By Assumption A.5 and Lemma A.3(x) below

1)\ H L al 5 (6-1) 1 o 0 (e—1)
(H ) N ¢A,¢ Eitdit = —TZZFS [5isgis+nis gis] €itJit
i=1 i=1 s=1

N T
1
= _T Z Z FOE (Ezsgzt GisGit + = Z Z F gzsgzt (87;581‘,5)] GisOit

i=1 s=1 zlsl

Z Z Foms gzsgztgzt

i=1 s=1
= op(T*Ml/‘*) +O0p (635 InN) + Op(T~ /4 4 572 In N).

=

=

~ (-1
Then max; H A Zl 1 (;55\1 )5ztgzt ‘

£—1)
Note that HW Pl 1¢§\z AV git|| <

= Op (T~1M/4 4+ 63 I N).

(£—1 . _
’NT Zz 125 1F80 Eis )>\0,g’“‘/ USlnggit:(l_Q)_

HHZ 1)

(9t — q) , we have

N T
(t=1) \0r - 1 —1)_ 7 -
o ZZFO DNVG, = N7 2 2 EN [eisgmngs Y3is] i

=1 s=1
N T
- ZZF“A cisgis + ZZFOA‘”% s
i=1 s=1 =1 s=1
1 N T 1 N T ,
—1)_
_N_ZZ XY €isgis (git — ) — WZZFSA?'WES 5is(9it — q)-

=1 s=1 i=1 s=1

It is easy to show that the first term is Op (5]}2T) by Chebyshev inequality. The second term is
Op(6y%) by Lemma A.3(viii) below. The third term is Op(d 5% 1In N) by Assumption A.5(iii). By
Lemma A.3(iii),

N T
1
NT Z Z FO)‘O,nzs gzs(ta - q = N_ Z ZFO)\OInl 15 gls(g’t B q) + OP(5NT In N)

i=1 s=1 =1 s=1

15



uniformly in t. Now we make the following decomposition

N T
1 ~1)_ (e-1) (e-1)
N7 2 2 EN Vaitgn —a) = TZZFOAO’ [F Ay + 2 (H ) o

i=1 s=1 i=1 s=1
+)\?/(ﬁ(571)) 1 (€ 1)+FO’H(€ 1) %’l 1)]gzs(gzt_Q)

Iy + Iloy + 1134 +.U4t-

For IIs; and 114, we apply Lemma A.3(ii) to obtain the rough bound

max | I1s:]] < max

N
Zngmw A Y gis(gie — 9)

< )H — Op(T"/4532 In T + T~ 1371/4) and
o 0\ [ or (o= (=1 = (o
max [[[1y[| = max NT;;FA [F HEVE }gzs(gm: q)
A(-1)|| Yo 4 5—2
< Op(1) max |7y , H p(N72/%0 7 In N).
By Lemma A.5(i), we have
1 I (e-1)
m?XHIIuH = max TZI ZIFO)\O'FO'HZ 1)¢A7,~ ]ﬁis(git—Q)
S 1=
| TN
- 0 07 7207 7y (£—1) ( y/\—1 = (.
< m?X NT ;;Fs tr [)‘Z Fs H (Q) BA,zg’Ls(gzt Q):| H
1
+ max NTZZF% Rl D(1—q)dys gm(git—q)} +Op(N"2/*5 7 In N)
s=1 =1
N N
< Op (1) maX X;/BAz)\z gzs(ta_Q) +OP ma NZ: >\ gzs git — )
+0P(NV2/45N2T1HN)

= Op(Oy%InN) + Op(T~ /2 4 5 2 InN) + Op(N2/45 2. In N)
= Op(T~1M/2 4 N2/45 2 mN)

Similarly, using Lemma A.5(ii), we can show that

max | Lot || = max = Op(T*1+71/2+5]*V2T InN).

NT Z Z FONY [/\0/ (HD)~ ¢;€;1)] Gis(git — q)

i=1 s=1

L (0-1) ~(€—1)

)\ (H( ) 1)‘0 d)Az
< maxy HN i]il[Bgfl) + Béf*l)])\z- Git

A(e N N (-

Noting that 7 = Béffl)jtééf*l), we have max; H % Yoisq1TA p ))\O’gﬂg

, where Bl(i 5 are defined in the proof of Theorem 2.4(ii).
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By Lemma A.4(iv)-(v), we have

N N T
i A1) y0r~ _ i (—1)y—1 Fr(0—1)7 120 (e—1)y (¢=1) yor
max N;B% Ngir| = max — ||(HY) ;X_;(H FO — p=1) A
1o,
< Op(Dmax || = S (AEVF — FED ) = 0p (535 0 N)
s=1
and
“ | N7
1)\ 0/~ A(0—1) £y (0— (- A (0—1) —1\ 0/
max ZB )\0/ _ m?X _T;SEZEFS(E 1)(H(€ l)lFSO_FS(Z 1))I(H(f 1)/) 1>\?’9it
1 T
A1) Fr(0— A(0— -
< Op (1) | YAV~ VY | = 0n(i3E).
In sum, we have maxtHﬁ(ffl)'% Z]\Ll %l 1))\0’9”/ =O0p (51—\[2T1DN),
(v) By the definition of &5%{1) and Eg-t 1), we have
max Z(b Ft()'gzt
| I -
S Op(l)mzax N—ZZ)\;) Et )FOI_

t=1 j=1
] TN

< Op(1)max WZZ)"FtO/gjtgjtgit +Op (1) max ||~ Z/\O H?;t 2G| -

t=1 j=1 t 1j=1

We can show that the first term is Op(dy% In N) by applying Assumption A.5(iii). For the second

term, we have by Lemma A.3(viii) and (iii)

max ZZ/\O tn]t g]tgzt

t 1 j=1
¢—1\~x (-2) - 1 (t-2)
— 0 0r 2 0o, (0=2)-
< NT ;Z;)‘j t Mje it +m?X NT;Z;AJ‘FI‘, Mt Git(git — q)
=1 7= =1 5=

= Op (6y7) + max NT ZZAO Fn\ 2 g54(gi — q)
t=1 j=1

T N
1 £-2) _ -
- EINT SN N Pgi(gi — )| + Op (9350 N).
t=1 j—1
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0

Noting that n(z) FtO’H(e)qb + \(E@O) - 1¢) + X0 (E) y FYH®Y r/(\)z, we have

T N
1 o (0—2) 2 (0—2) o (0—o) i —1 5 (E—2)
N ZZAO ) nl]t g]t<gzt_Q) _ WZZA?FtO/[FtOIH(é 2)¢A,j —i—)\?I(H(Z 2)/) 1¢F,t
t=1 j=1 t=1 j=1

+>\?/(ﬂ(472)/)717@%t—2) _i_FtO/];f[(éfQ) NG 2)]%(% —q)
= IIl;+ 1115 + I113; 4+ I11y;.

For the first term, we have

%

T
(e— 2/A _
mZaXHIIIuH = max NZ)\OQZ) Z: Ft Gjt(9it — q)

~(£—2)
quA] Hmax
J

IN

max
J

= Op((T/WT) ™ ?)Op((T/InT) ™2 + T7141/2) = Op (5350 N)..

1 _
= Z FYF gjt(gie — )
t=1

Similarly, we can show that max; HIII4Z|| =0Op (5N2T In N) and max; ||[I114|| = Op (5 InN+ N— 1+72/2)
for [ = 2,3. Then max; ||+ Zt:l qSFt Ft gitll = Op (5NT111N +N— 1+72/2) )

Noting that T(Z b= Ft(e_l) HE RO (l)Ft &g_l) + dgﬁ_l) by (A.8), we have

1 I ¢ 1 I ¢ 1 I ¢
(-1 _ (-1 _ (-1 _
T ;ﬂt )FtO/git < T gt )FtO/git + Tza;(gt )FtO/gzt
t=1 t=1 t=1
Note that
L (1) 1 L (-0
1 (0=1) 07— 1 L f(6—1) 1 0~
leaX T;alt Fgi < Op(1)max T;N ; s Z Ft git
; I .
1
= Op(l)mZaX NT2ZZZFS g‘t )( )Ft Git —l—Op((SN?TlnN)
t=1 s=1 j=1
1 1 T (g )
0 1)_ 0 2
< Op(l)m?xN; T;Ft S it TZF Op (053 InN)
TN N
1 _
< O Do |2 = +0p (3 N)
j=1 s=1
Using the decomposition 5%71) = €jt gjt+'f]§-i72) g5t and Assumption A.5, we can show that ﬁ Zthl ZST:1
{— 0— — {— —
SN VTV RORY G, = Op (533 InN) . Then max; |+ 31 a4l VFYg:| = Op (63510 N).
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Similarly,

T T
1 1 1
max TZ&:(’,?FtO/gzt < Op(l)mlax TZ N_Z Z)\O’Ft ]s Ft Git
t=1 t=1 s=1 —
1 1TN0(1¥0/00/ -2
= Op(l)m?X TZ N—ZZFS JS)\] FoEF g +Op(5NTlnN)
t=1 s=1 j=1
TR
= Op WZZF]% A+ Op (53210 N) = Op (53210 N) .
s=1 i=1

1T()

It follows that max; || 7 > ;—; Py FYq

=Op (6yrInN).

, where the second term

1 2 (=)
(vi) Note that Zz 1‘771t H < Nz )771 it H +sz 1 ‘ M2,it
is bounded above by Op(8yp(In N)?) by

s el

(iii). For the first term, we have

N N7 N N7 N N 2
< mpcg Z | “‘%ff,i R e L Oy PR ol L ]|
=1
N _ 2 2
< 4| A0 x| 2 H o ||+ P

+4 H(lﬁl(lzfl)/)*lH {mﬁx

= Op(T~"/2 L NIl N).

P 1 o 0112
H g [ 3 S )
=1

(1) H = Op(T~14/24- N~ In N). Similarly, we can show that max; & ST

It follows that ]{, Zz 1 ‘
[ = 0p(v-142 4 711 )
(vii) Recall that k; = 1 + HFtOH2' By the C5 inequality and (ii(ie)), ﬁ 23;1 ZZ Kt(ngf 1)) -
N ) ¢ 2 (0) (01 ~14 —1p
o Zt 1 ZZ 1 mt(nl Zt ))2+0P(5N%1 (In N)2). Using ng;t = FYHO AN (HO) 1¢F,t+>‘?’(H(£)') 17"5:35%-
FO/H Zl 1 771 zt( ), we have

, LN (13 1) 44 TN ) 4
N_Z:Z: nlzt 254;ﬁ§;ﬂt{nut ] E4121:[[2,1-

=112 . 2
Noting that % Zf\il HQSS\J Y H = Op (T™!) , we can readily show I 15 < H(e_l)H % Zthl HFtOH4 % i]il




AGIE 1 :
‘(/bA,i H =Op (T'). By Lemma A.5(i)
1 A (=1 |2 2 & (-2 |2
=3 wm|n | = 23k @BR + (= @), || + O (T1205 () 4 T2 2)
t=1 t=1
1 <& 5 1 & -2)
< 0p(W) 7Y me|Br| +OP(1):FZ’” H +0p (672)
t=1 t=1
=0MW)
we have [ 5 < ’( H NZZ 1H)‘O/H T tl:‘it l)H =0Op (5 7). Similarly, we have
g = 2 35w [ < 0p 1) LS Y = 0 ()
2,3 NT Kt rF,t s Up max rFt IitN i P\OnT) >
t=1 i=1 = i=1
and

)2 1w )
Sl = 0n ).

T N
1 (1) A(0—1) |2
114 = NT E Z’it )FtO/H( 1)/7"/\71 ‘ < Op (1) max

t=1 i=1

It follows that <= SN, ﬁt(ngf_l))2 =0Op (5]_\,27,) .

(an) Note that ﬁ Zf:l Zz 1 FO)\O/les Gis = Zl 1 NT Zs 1 Zz 1 FO)\O/nl S gis = Zl2:1 11371'
We only show Il3; = Op (5]}2T) as the other term is of smaller order. Note that

T N
1 o r 1) A (=1 A1) —1 5 (=1
gy = om0 FONVEY 0K + AV (D) o,
t=1 i=1
+)\?/(ﬁ( )) (6 1)+F0’H(f 1) j(\f 1)]%

,Z

= I3, (1)+ 13 (2 ) + 1131 (3) + 131 (4).

Let )\ and F0 denote the Ith element of )\0 and F?

S

respectively. Let II31;, (-) denote the (I,7)th
element of B3 (). Noting that gis = (1 — q) + (¢ — gis) , we have

113,10 (L]

T N
1 é 1)
_T § ETEO/H f 1 E 71 §Zt>\?l
t=1

1=

T N (- 1
}: 0/ él}:
trFtH Ai
=1

= II3,1lr(7 )+II3,IZT (1,2).

(= 1)
NT ZFtrFtOIH (=D Z¢ (9it — Q))‘?l
i=1

For 1131 (1,1), we have

N N
1 ~ (=1 1 alp 0—2
I3, (1,1) < Op(1) NZ‘?E\,Z )A?z = Op(1) NZH(E V(B + (1—Q)¢§u )]
i=1 =1
1Y 1 XL -
< OP(l){NZﬁAz)‘?l"i_(l_Q)NZ(bA,z )‘?Z}ZO (657)
=1 =1



For 1131 (1,2), we have

T
A (l=1)1 ~ p_ 1
ZA P g [T ZFtOth«(git - Q)]

Il3q, (1,2) =

IN

2}1/2

=112
aswecanshowthat%zzzvl HAQHQHQS%ZDH =0p (057) and%ZﬁlEH% _, FOF? (gzs—q)H2 =
O (T71). Then II3; (1) = Op (5 7). Similarly,

1 N
A3
i=1

= Op (oyy) Op(T™%)

1 L1 &
H} {NZ TZEOFg(Qit—Q)
=1

t=1

1 113,171 (

- H Zz)‘?r)"?/ (b(e 1) slgls

s=1i=1
1-g L)
0 O/ £Fy(e— 1)/ -1-= o\
Z)‘zr/\z H TZ¢F,5
s=1

= Hs,lrz( , )+Us,1rl (2,2).

1 T N
N_ZZ z)‘OI ¢ (gzs_ q)

For II3 11 (2, 1) we have I131,(2,1) < Op (1 )HTZS 1¢§£81) F,ll=0p (57 ) as we can show that

H — 1 qus Y1 = Op (5NT) by following the analysis of H N D e 1¢A7i

we have

l . FOI“ 1137171 (2, 2) y
II3,1TZ (27 2) = T Z sl¢Fs Z )"(LJ)\?T gZS -

e —111{%2 o) { 1

= Op (3yy) Op(N"Y/?).
So I3 (2) = Op (6 ) Analogously, we can show that II3;(l) = Op (517\,2T) for | = 3,4. Then
1131 = Op (0n%) -
(ix) By (vi) and the fact that Zfil E (% ST Fgeisgis) =0 (T

T N N
1 _ 1 _
~NT g FS0 g 77% 1)§it€z‘s9z’s N;_l m(f 1)§it< E F €isYis

2 1/2
LS (1) Lo (1 0
m?XNZ(nzt ) NZ TZFsgisgis
O

IN

Z )‘O gzs -

I

N — ~—

IN

1=1 s=1
— Op ((T_1/2+”’1/4 (N/InN)~ 1/2) » (T—1/2)
= Op (71 0/4 4 (NT/mN)H2).
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(x) Note that ﬁ Zzzl FY vazl €itgitm(-s

One can bound I142; by Op (5E2T In N) by using the uniform bound for 7,

have

ITgq¢

+)\0/( 5 G 1)) N (

For 11414 (1), by (i), (iv) and the fact SNE H%

In?XILth(l) < max
+max Zéztgthﬁ
1 N ~(6—1)
< Op(1)max NZ;(bA’i EitYit
1=
+max

For II51:(2), we have

0 (6=1)
max I 14,1 (2) - ZF Ors

< 1—q ZF% G 1
1 O/\(zfl)/ 2
T ZFS (bF,s
s=1
< Op(l)max‘&blf; Hmax

st

+0p (1 {TZ‘

1 T N X
, = WZnggitQit[FtO/

—1
QZFOFO/HZ 1) NZ¢( )5zt9it

H(f l)/ ZFOFOI gis — q )

r-1) 1N21/21N
H{ Ng%} N2

OP(T71+71/2 + (5]_\,271 InN)+ Op

| X
)1 N Z NeitgitGis

1
1N Z Neirgit (9is — )

| X

N Z NeirgitGis
i=1

0 (Z 1)/

Op((N/InN)~"Y?)Op((N/In N)~'/?) + Op

Gis < Zl 1 NT Zs 1F0 Zz 1Ezt91t77z(@s Jis = Zz 1 La s

(=1) 5 n (iii). For 11414, we

{—1 {—1
)¢( ) FAV(AED - <Z5( )
) + FO/H(K 1) S\Ez 1)] is

11471,5 (1) + II4’1t ( ) + 11471,5 (3) + 11471,5 (4) .

2
ZST:1 FIFY (gis — q)H =0 (T*I) , we have

s=1

2y 1/2

T

1

T E FYFY (gis — q)
s=1

1/2)

(T/ I T)"Y2)Op(T7/?) = Op(T~1+71/2 4 632 In N).

=1

Z A i €itGit

i=1

N 2y 1/2
1 0
N Z i €itGit (9is — q) }
i=1

((N/In N)~2)0p(By) = Op(63% I N).

s

Analogously, we can show that max; || IIs1¢ (1)|| = Op(63%1In N) for I = 3,4. Then max; || 115 1¢|| =

Op (T7¥/2 4457 InN). 1
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Proof of Lemma A.6. (i) max; % Zthl |Eit — eit\2 = Op (mfl lnT). Noting that &; — ey =

S\;Ft(o) - )\?'Ft(o) = (5\50) - ﬁ_l)\?)'ﬁ’t + A?’{[ﬁ’]_lﬁ’t — F2}, we have
1, 2 - —140y/ o F-17
mlgixf;kit—siﬂ = maXTZ::‘ MY+ N (H)LE, - Ft}‘
< sl o 5 e |
=1

= Op(T™'InT)+ Op(N"2/?)Op(N7Y) = Op(N~12/2 L 77110 T).

(ii) Note that

max |6 — cul < max |\ — BN B + max | \{(7) 71 F - FPY

1, 2, 2y
< g 58 ] g~ ]
= Op(T7Y2(InT)Y?)Op(T/*) + Op(N"2/)Op((N/InT)*/?)
_ OP ((T71/2+’yl/4 _’_N71/2+72/4)(1nT)1/2> = op (1)7

where we use the fact that max; HFtH < max; HFt — I:I’Ft(O)H 4+ max; HH’ H = T71/4

(iii) This follows from (i) and (ii) and Theorem 5 in Fan, Liao, and Mincheva (2013). B

Proof of Lemma B.1. (i) Following the proof of Theorem 1 in Bai and Ng (2002) and that of

Theorem 2.1, we can readily show that
L\l #R 07 |2 —2
=" = Foin| = 0r (57%). (C.5)

Recall that Dy denotes the R x R diagonal matrix that contains the R largest eigenvalues of
(NTp?)~1X*X* arranged in descending order along its diagonal line. Then (NTp?) ' X*X*Ug
— UrDp. This, along with the definition that FR — (NTpQ)f1 X*X*FR and the fact that FF =
VTUg, implies that

FR = VT (NTp?) ™' X*X*Ug = VTUrDg.

Then by (C.5), we have % H\/TURDR - FoﬁllR“2 =0Op (5]_\,2T) .

(ii) Following the proof of Theorem 1 in Bai and Ng (2002) and that of Theorem 2.1, we can
readily show that % HAR — AO_FIQRH2 = Op (5]}271) . Noting that (NTp2)_1X*’X*f/R = VgrDp and
AR = \/NVR, we have

AR = (NTp?) ™ X*X¥AR = VN (NTp?) ' X*X*'Vg = VNViDg.

o N 2
It follows that % H\/NVRDR - AOHzRH =Op (%@%F) -;
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Proof of Lemma B.2. (i) Note that 52 = (NT)'62 denotes the rth largest eigenvalue of
(NTp*)~tX*X*. In view of that X* = X o G* = (FOAY + ¢) o G*, we have

(NTp2)—1X*X*/ — N;p2 [(FOA0/+5) OG*] [(FOAOI +€) OG*],
1 * * 1 * *
= g [FAY) e G [(FOAY) 0 O] + (e 0 G (0 G

% [(FOAY) 0 G*] (e 0 G*)' + %(s 0 G*) [(FOAY) 0 G*]'

IV + IV + IV3 + 1V},

_l’_

As in the proof of Lemma A.1 and using Lemma C.4 below, it is easy to show that [l o G*||j, <
plelly, + lle o [G* = plrxn]lly, = Op(VN + VT). Then

1 . B
1Vally, < f lleo GUIIG, = Op (937) » amd
1 1
IV = IV < FOAY| —— leo G*||.. = Op (6%4) .
H 3||sp || 4Hsp = pQW H H \/W H ||sp P( NT)

For IV, we use G* = plpyn + (G* — plpy ) and make the following decomposition,

1 1 . .
IV = _NTFOAO/AOFO/ + TS [(FOAOI) o (G —plTxN)] [(FOAOI) o (G _plTxN)]/
1 . 1 §

= IVia+1IVip+1Vig+1Via.

Using Lemma C.4 and following the analysis of H (F OAO’) oG H in the proof of Lemma A.1, it is easy
to show that H (FOAY) o (G* - plTXN)Hsp = Op(V/N + /T), with which we can show that

[IVia|| = Op (657) and [[IVig]| = [[IViall = Op (§x57p) -

Then by the Weyl’s and triangular inequalities, we have

NT

1
57— 1y (—FOAO’A°F°/> ‘ < | IVa+ IV + IVy+ IVig + IVig + IVially, = Op (657) -

In addition, p, (5 FCAYA°FY)—02 = Op (6y) under Assumption A.1(v). It follows that ’5’% — o2 =
Op ()

(ii) Let e* = %5 oG*, C* = %(FOAO’) o [G* —plrxn] and ¢* = C* + *. Then
1 1 1
_X* — —XOG* _ - (FOAOI—F&) OG* :FOAO/—{—g*.
p p p
Let Pyo = A°(AYA%)71AY and Qo = In — Ppo. Let F* = FO 4 ¢*A%(AYA%) =1, Then
1

1 1
NTpQ X*X*/ — ﬁka/A()/A()ka + ﬁ§*QAOC*/.
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It follows that for any r > 1

)= * 1 1 * *
U%o+r = HRy+r <NTp XX /> < HRo+1 <WF*/AO/AOF*> + <ﬁg QAOg />
1
= <ﬁ§ QAO§ >
where we use the fact that rank(F*AYA°F*) < Ry. Using Lemma C.4, we can readily show that

Is*(lsp = Op(VN +v/T). Then

1 1 L2 —2
<ﬁ< Qpos” > < Wy (ﬁC S > < NT s Hsp =0Op (5NT) :
It follows that 5%%o+r =0Op (6]}2T) for any r > 1.

(iii) To determine the lower probability bound for 5’%;{0 +r» We notice that

12 Ro+r <%<*<*’> < HRytr < N Qs > + HRyt+1 < NS Faos” >
K Ro-+r <N1Tg Qpos” ) < HRotr <N11’ X*X*/> = Ghoir-
p?
Without loss of generality we assume that 7' < N and consider two cases: (1) 7" and N pass to
infinity at the same rate (viz., T'< N) , and (2) T'= o (V). In Case (1), we can follow the proof of
Lemma A.9 in Ahn and Horenstein (2013) to show that 63,79 Rotr (Fr™s™) is bounded from below
by a positive constant. In Case (2), we can consider the principal submatrix of ¢* and show that
* _k/

637 1hs Ro+r ( ~7<*¢*) is also bounded from below by a positive constant. It follows that 5?VT5%%0 T

is bounded in probability from below by a positive constant, say c¢,, as (N,T) — oco. B

Proof of Lemma B.3. Let r > Ry + 1. Recall from the proof of Theorem 3.1 that F = Ffo and
H = Hg,. Note that

A
T

_ || @ (F°H - F)
VT

N - F°H —F _
H H™ T = Op(Ox7),

< |[&| narl

T

where the second inequality is by orthogonality between @, and F = FRo for r > Ry,. Analogously,
we can show that 2% = Op((s]_v]iq). In the following, we aim at improving the probability order to
show that 7.A° = Op(8yy) and @ F° = Op(6yh)

By the definition of singular value decomposition (SVD), we can write %X * Zk I uk%&k
Recall that ¢* = € o G* + FOAY o [G* — E(G")]/p, %X* = FOAY + ¢* and 7, denotes the rth

eigenvector of Z%X *X* that is associated with its rth largest eigenvalue. If follows that

<FOAOIAOF0/ N FOAOIg*, N g*AOFOI N §*§*/> . 5_%

NT NT NT NT UrNT

25



Premultiplying both sides of the above equation by F”/v/T, we have
FO/FO AOIAO FO/fLr FOIFO AOlg*/ﬂr

= 572
where we used the fact that F\j}%o = Op(1), J(\}ng = 32 = Op(0x%) for 7 > Ry, |la.|| = 1,
# HFO’~ H = Op(0ny) s*/VNT|| = Op(65y). Premultiplying both sides of the above
sp
, 1
equation by (F OF 0) , we have
AV AOROr  (*r A0 1X*’ &, A0

Ur,

OP(CS]_\?T): Uy =
VN V/NT \/7\/— \/—

where the second equality follows from the decomposition %X * = FOAY 4 ¢* and the third one holds

by the fact that %X*'ﬂT = &,9,. It follows that AY%, = Op(éj_v%p) as % = 51_\[T(“7T is bounded

away from zero by Lemma B.2(iii). A symmetric argument gives that @, F* = Op(dy;). W
Proof of Theorem B.4. The proof follows closely from that of Theorem 1 in Negahban and
Wainwright (2012). It suffices to show the probability of the event

7 cs ||
ENT—{HFGCNT co) | ’H—FOGH—HFH'>§||P||+%}

is bounded by ¢; exp(—cadlogd). Note that the claimed result holds for ¢I" too if it holds for I'. In
addition, since Cyr(cp) is invariant to the rescaling of I', without loss of generality, we can prove the
result by assuming that |||, = 3. For any I' € Cy7(co) with [T, = 3 and ||| < D, we have
IT|l, < p(D), where p(D) = COL\/I‘O/% by the definition of Cyr(cp). For each radius D > 0, consider
the set

1
B(D) = {T" < Cxrle) | [T = 3.1 < DT < (D)}

and the associated event
ENTD_{HFEB | ‘H—FOGH |F||' —D+8d}

Lemma C.1 below shows that it suffices to obtain the upper bound for the probability of the event
EnT p for each fixed D > 0. In the second step, we show the probability of Ex7 p is bounded by

c1 exp(—c2D?NT) for some universal constants (c1, cz).

Now, define
ZnT(D) = sup ’—FOGH
FEB
where B(D) = {T' € Cnr(co) | Tl < 4, [T < D, T[], < p(D)} . It suffices to show that there are

universal constants (ci, ¢z, ¢3) such that

3
P | Zn7(D) > ZD + %] < exp(—czDQNT) for each fixed D > 0.
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In order to prove the above result, we begin with a discretization argument. Let I't,... TN©) be a
§-covering of B(D) in Frobenius norm. By definition, for any I' € B(D), there exists some k € [N (6)]
such that HF — FkH < 6. Let A=T —T%. Then by the repeated use of the triangle inequality,

ec]-m = oo
c [l
ol o]

A symmetric argument gives the lower bound and establishes that this inequality holds for the

absolute value of the difference:

50 ol -om <l =of - 1]+

H—A o6 +a

Because both I' and I'* belong to B(D), we have that ||Al|, < 2p(D) and ||A||, < 2/d. Consequently,
we have

ZnT(D) < d+ max
kE[N(9)

where D(D, ) = {I' € Cnr(co) | [Tl <2, [IT) <6, [T, <£2p(D)}. Then by Lemmas C.2-C.3
below with the choice of § = D/8, we have

D (D 24\ D 3D e
Znr(D) < 2 2=
NT()_8+< d\/_> PRk

with probability larger than 1 — ¢; exp(—coD2NT) by choosing large enough c3. B

sup
AeD(D,$)

H_rk . GH - e[+

el

The proof of Theorem B.4 relies on the following three lemmas whose proofs are given at the end

of this section.

Lemma C.1 Suppose that there are universal constants (c1, c2) such that P(Ex7p) < ¢1 exp(—c2D2NT)

for each fized D > 0. Then there is a universal constant ¢ such that P(Ent) < ¢; 16};1;(526],;{;#)1%:@)@.

Lemma C.2 As long as d > 10, we have maxycn(p/s)] ’H#FkoGH — HF’CH’ < D with

424
8 T dyp
probability greater than 1 — 4exp(—cd? - D?) for some constant ¢ > 0.

Lemma C.3 supacp(p,s) H%A o GH < % with probability at least 1 — 2exp(—%).
To prove Theorem B.5, we need the following lemma.

Lemma C.4 Let Z = {Zy} be a T x N matriz such that Z; are independent across (i,t), E(Z;;) = 0,
and max; ¢ | Zit| < c¢. < oo with probability 1. Then there exists constants My and My such that for

anyt >0, P (||Z||5p > Ms(cq V cp) + t) < (NAT)exp (ﬁ;) , where ¢, = max; Zthl E (Z%) and
Cp = maxy Zfil E (th)
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Proof. See Proposition 13 of Klopp (2015). =
Proof of Theorem B.5. On the set C;y7, we define the metric d(-,-) by the Frobenius norm, i.e.,
d(Fl,Fg) = ||F1 — FQH .ForI'y = U1V1’, I's = UQVQI € CinT, we have

N T N T
Ty = Tof* = Z Z (UreVii — U Viy)? = Z Z[(Uu — Uat)Vij + Uze(Va; — Vay))?
=1 t=1 i=1 t=1
N T N T
< 2 Z Vi Z(Uu — Up)? 42 Z(Vu — V)? Z Us?
=1 t=1 =1 t=1

= 2(|U1 — Ua|* + Vi — Va)?),

where the inequality holds by the fact (a + b)? < 2(a? + b?) and the last equality is due to the fact
|Us|| = [[Va]| = 1. Let {U;} and {Vj,,} be the minimum e/2-nets of unit sphere in R” and RV,
respectively. Then for all I' = UV’ there exists a pair (I, m) such that

T = VL1 < 201U = U2 + |V = Vi |?) < €%,

Hence, {U;} x {V,,} is an e-net of Cynp. The covering number N (Cinr,d,e) can be bounded by
N(BY |l ,e/2) x N(BE ||l ,€/2), where BY denotes the unit ball in RY space. By Corollary
4.2.13 of Vershynin (2018), we have N (Cin7,d, ) < (6/¢)N*T. Let en7 = 1/log(N +T) and fix the

minimum eyp-net {I'1,...,Ix} where K < (6/en7)V 7. We have

S T'o|G - E(G < max su T'o|G - E(G
S [olG=B@ll, < | mas o Co[d- B,

< max I'olG - EG o T su T—T.)olG = EG .
ke{lmK}{ll kol ()]s d(FIk)I;aNTll( K)ol ( )]llp}

< max [Tk o [G — E(G)]|l,, + max sup r—r
ke{l,...,K}H * [ ( )]H‘p ke{l"“7K}d(F,Fk)S€NTH kH

< —F
S elex, [Ty 0 [G = E(G)]lls, +ent,

where the second inequality holds by the triangle inequality, the third inequality is due to the fact
that [|Ally, < |A] and every element of G — E(G) is bounded by 1. For each k, we have I'y, = UV}
for some unit vectors Uy and Vj. Let Z*) = I'y o [G — E(G)] and denote its (,7)th entry as Zi(tk).
By the definition of Ciy7 and the fact that G — F(G) has bounded i.i.d. entries, we can show

max; ¢

20| < 10k Vel < s

T 1/2
max; (Z E[(@?’)Q])
t=1

By Lemma C.4, there are some universal constants M; and Ms such that

(e

IN

N 1/2
Vil < cont, and max; (Z E[(pr)ﬂ) <N Ukllo < cin.
i=1

t2
> My(eanT V conT) + t) < (N AT)exp <_ M, c? ) .
3NT

sp
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Letting ¢t = KM11/203NT\/(N + T)loglog(N + T) and noting that K = (6log(N +T))N¥*+T, we have

ke{l,.. K}
(6log(N + 1)V (N A T)exp (-K*(N +T)loglog(N + 1))

= exp (—(K? —1)(N +T)loglog(N +T) +log(N AT) + (N + T)log 6)
< exp(—(N+T)loglog(N +1)),

P < max HZ(’“) > Ma(cinT V canT) + 75)
1%

IN

as long as (K2 — 3)loglog(N +T) >log6 and log(N + T) > (N AT)YN+T)_ Hence we have shown
that

= Op(cinT + conT + CgNT\/<N + T)loglog(N +T)).

a2

To sum up, we have suppee, .. I 0 [G — E(G)]|| = Op(cint+cant+esntv/ (N + T) loglog(N + T)+
1/log(N +T)). ®

Proof of Lemma C.1. For all T' € Cyr(co) with ||T'[|,, = 3, we have

logd
d

logd
d Y

1% > eo [T, > co [T

which implies that ||| > p = cm/k’—fl—d. Accordingly, recalling the definition (B.5), it suffices to
restrict our attention to the sets B(D) with D > u. For [ =1,2,... and a = 7/6, define the sets

1 _
5= {1 € Crr(eo) | [Tl = 5, T € '~ ps,alpd, and [T, < p(a'p)}.

Now, if the event Ey7 holds for some matrix I, then T' € S; € B(a!y) for some [ and
e ||L|| 1, el _ 3
—T I I x> RS
‘H OGH [ H‘ g ITIH+—3 8a et S g =1 u+8d,

where the equality holds by the fact that o = 7/6 and |||, = 4. Thus, E NT,aly, occurs for some
[. Tt follows that Enr C U2 Eng 41, By the union bound and the fact that o > 2¢*] for some

c*>0and alll > 1, we have

IN

o0 oo o0
Z PENT,) < Zexp(—@agl,ugNT) <c ZGXP(—2C*CQ/,L2NTZ)
=1 =1 =1

e _ /NT;LZ)
_ ot el NT — exp(—ch
c1 ; lexp(—2c*cop®NT)| = ¢1 T exp (G NT /)’

P(En7)

where the second inequality follows from the hypothesis on P(En7,p) and ¢y = 2c*ca.
Since NTp? = N L 1og d, the claim follows. W

Proof of Lemma C.2.We first consider a fixed I and establish the exponential tail bound. Then

we bound the covering number N(D/8) and use the union bound to establish the result.
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By the definition of Frobenius norm, we observe that for any 7' x N matrix A with typical element

Ajr, we have

1/2 1/2
Al = Z(Ait)Q = Z(Aitzit)z = sup ZuztAztzzt
it it IUN=1"%
where z;’s are i.i.d. Rademacher variables. Then
1/2
1
H—F o GH ]—?Z (Tigit)* = sup ZuitYit = ZnT,

it U=t \ %%

where Y;; = %zitfitgit, and z;’s are i.i.d. Rademacher variables that are independent of {g;;} . Note
that each Yj; is zero-mean, and bounded by ﬁ. By Corollary 4.8 in Ledoux (2001), we conclude
that

pd2d? 64
3 ), and E(Z3r) — [E(Zn7))* < porek

P<|ZNT—E(ZNT)| >5+d—\\§—;> < dexp(—

It follows that ‘E(ZNT) - ,/E(Z}’VT)) < %, With the above results and the fact that £(Z3) =

|T||?, we can conclude that
24 pD%d?
Zrk It = 5 + =) < 4exn(- .
Pl -1l 2 5+ ) < seot-"a

The upper bound of covering number N(§) can be bounded similarly as in the proof of Lemma

4 in Negahban and Wainwright (2012). Then we have that

D2Vd

log N (8) < 36(p(D)/d)%d, where p(D) = olosd

Combining the tail bound with the union bound, we obtain
2 D2q?
— —|— —) < 4exp(—p +36(p(D)/6)?d).

P
Qqﬁ?ﬁ%ﬂsn /pd 512

Choosing the constant cg sufficiently large, we have the desired result. B

lek o GH Hr’fH
P

Proof of Lemma C.3. Our goal is to bound the function f(G) = supacp(p,g) HﬁA o GH , Where
we recall that D(D,8) = {I' € Cy7(co)| Tl < 2, [Tl <6, [T, < 20(D)}.
(i) Our approach is to show concentration of G around its expectation E [f(G)], and then upper

bound the expectation. For any independent copy G of G, we have

~ 1 1 - =~
f(G) - f(G) = sup —AOGH— sup —AoGH
AeD(Dg) 1VP Aep(pa) VP
<t el el
AeD(D,s)
< sup —Ao H
AeD(D,9)
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where the last inequality is by the fact G — G has entries bounded by 1 and ||A||_, < 2 Therefore, by
the bounded differences variant of the Azuma—Hoeffding inequality (Ledoux (2001, p.17)), we have
P{f(G) - E[f(G))| > t} < 2exp(—ELE). Setting t = 2, we have P {|f(G) - E[f(G)]| > B} <

d2 D2
2 exp(— p—512 )

(ii) Next we bound the expectation. First applying Jensen’s inequality, we have

(EF@) < EF@)=E| swp S Az

AeD(D.S) ‘73
2 gzt 2 Git
= sup AA )} + ||A||
AED(D,5) Z { ( p
it 2 it 2
< sup [AQ —E(A-—)} + 67,
AeD(D,$) Z " p

where we have used the fact that ), , <A12t%) — ||A|* < 6%, By a standard Rademacher sym-

metrization argument, we can show

1 Jit 2
E[f*(G)] <2E| sup —E:(NTAz—@) + 62,
[ ( )] AG'D(Dﬁ) NT i7t it p t

< 4% for all (i,t), the Ledoux-

Talagrand contraction inequality (e.g., Ledoux and Talagrand (1991, p.112)) implies that

where £;;s are i.i.d. Rademacher variables. Since ‘N T A?t%&t

32V NT sup Z

— 19itla) | + 0%
d2\/_ AED(D,s) s

E[f*(@)] <

By the inequality that [tr(AB)| < [[Al, | B|,, we have ’Z” (Aitgit€i)| < Al |G o €], - It follows

that
sl < B

where we used the fact that ||All, < p(D). Noting that G o £ is a random matrix with bounded

p(D)E |G o ¢€llg, + 62,

Li.d. zero-mean entries, we have E [|G o {||;, < v/dlogd; see, e.g. Theorem 4.4.5 of Vershynin (2018).

1/2
EIf(@)] < VEITAG) < (32 D 52> <Ip,

by choosing a large enough ¢y and noting that d = (N +7)/2 > vV NT.

Hence, we have

Combining the results of part (i)-(ii), we have the result desired. B
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D Additional Simulation Results

In this section, we report some additional simulation results.

D.1 Results for the 10% missing observations case (¢ = 0.9)

In this subsection, we report the simulation results for the case where ¢ = 0.9, i.e., only 10% ob-
servations are missing at random. Tables A1-A2 correspond to Tables 2-3 in the main text. The
results in Table A1l are comparable with those in Table 2. Our CV method performs slightly better
than the case with a larger proportion of missing observations, and it continues to outperform the

modified existing methods for most cases.

Table Al: Under/Over-estimation rate (%) with missing data (¢ = 0.9)

DGP N T cv cV M-ED M-GR  MER  M-PC M-IC
T 50 50 14.3/0.0 15/00 0.6/9.7 82.6/0.0 97.0/0.0 0.0/24.0 0.0/5.9
50 100 0.6/0.0  0.1/0.0  0.0/45  71.6/0.0 93.9/0.0  0.0/6.7  0.0/3.0
100 50 1.1/0.0  0.0/0.0  0.0/59 67.9/0.0 93.0/0.0 0.0/51  0.0/2.2
100 100 0.0/0.0  0.0/0.0  0.0/1.4 37.6/0.0 83.3/0.0 0.0/23  0.0/10
2 50 50 94/0.0 0.1/0.1  06/49 79.6/0.0 954/00 0.0/36.1 0.0/38.0
50 100 0.3/0.0  0.0/00  0.1/1.1  59.9/0.0 92.6/0.0 0.0/10.6  0.0/0.2
100 50  0.5/0.0  0.0/1.0  0.0/0.8 655/0.0 93.0/0.0 0.0/84.4  0.0/25.2
100 100 0.0/0.0  0.0/04  0.0/04 27.0/00 83.0/0.0 0.0/25  0.0/0.1
3 50 50 93/00 04/00 06/40 81.4/0.0 96.3/0.0 0.0/49.9 0.0/4.6
50 100 0.9/0.0  0.0/0.0  0.0/0.8  63.4/0.0 92.8/0.0  0.0/9.8  0.0/0.0
100 50  0.8/0.0  0.0/0.0  0.1/24  59.7/0.0 92.0/0.0  0.0/0.5  0.0/0.0
100 100 0.0/0.0  0.0/0.0  0.0/04 283/0.0 81.1/0.0 0.0/0.0  0.0/0.0
4 50 50 10.0/0.0 0.2/0.0 09/39 76.0/0.0 950/0.0 0.0/27.6 0.0/1.1
50 100 0.1/0.0  0.0/00  00/12  59.3/0.0 92.0/0.0 0.0/0.3  0.0/0.0
100 50  1.0/0.0  0.0/0.0  0.0/2.6 61.2/0.0 90.1/0.0 0.0/04  0.0/0.0
100 100 0.0/0.0  0.0/0.0  0.0/0.1 257/0.0 78.4/0.0 0.0/0.0  0.0/0.0
5 50 50 155/3.0 3.9/22 18/27.0 846/1.2 96.8/0.4 0.0/72.7 0.0/49.4
50 100 0.9/3.8  0.2/2.6  0.0/19.6 76.0/0.9 945/05 0.0/56.2 0.0/42.3
100 50 1.8/40  0.3/2.8 0.1/21.8 724/1.7 94.0/04 0.0/56.0 0.0/42.6
100 100 0.1/24  0.0/1.4 00/17.8 480/1.6 86.8/0.6 0.0/47.7 0.0/37.9

Note: We report the under/over estimation rate with missing data, where each entry is observed with probability

q = 0.9. We consider CV and CV with leave-out probability 1 - p = 0.1. For comparison, we also consider the
M-ED ,M-ER, M-PC, and M-IC, which are modified from ED of Onatski (2010), GR and ER of Ahn and Horenstein
(2013), and PC and IC of Bai and Ng (2002), respectively. The number of replications is 1000.

The results in Table A2 are comparable with those in Table 3. As expected, the MSEs decrease

as either NV or T increases, and the MSEs in the case of ¢ = 0.9 are smaller than those for ¢ = 0.7.

D.2 Estimation and inference results with a known number of factors

In this subsection, we report the estimation and inference results of the ‘infeasible’ estimators, which
are obtained by using the correct number of factors. Tables A3 and A4 reports the results for ¢ = 0.7
and 0.9, respectively. Comparing the results in Tables A3 and A4 with those in Tables 3 and A2, we

find that they are similar. A noticeable difference is the estimators of the common component based
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Table A2: Mean squared error and coverage probability of confidence intervals with missing data (¢ = 0.9)

MSE of Cj; CP of Standard CI CP of Robust CI

DGP N T Ci(toracle) C(tO) Cz(f ) Ft(oracle) Ft(O) Ft(i ) Ft(oracle) Ft(O) Ft(é )
1 50 50 0.250 0.489 0.288 91.1% 93.5% 90.4% 93.4% 96.3% 93.2%
50 100  0.186 0.355 0.210 91.3% 93.3% 90.9% 93.3% 95.6% 93.5%

100 50 0.187 0.360 0.211 91.6% 94.4% 92.2% 92.8% 95.8% 92.9%

100 100 0.124 0.234 0.139 94.0% 95.4% 92.7% 95.2% 96.7% 94.5%

2 50 50 0.284 0.502 0.311 87.6% 91.4% 86.7% 90.6% 94.1% 89.8%
50 100  0.197 0.355 0.217 89.4% 93.4% 90.3% 92.3% 95.5% 93.0%

100 50 0.229 0.391 0.250 88.3% 93.3% 89.6% 88.6% 95.0% 90.9%

100 100  0.142 0.248 0.155 92.3% 95.0% 92.2% 92.9% 95.5% 93.1%

3 50 50 0.248 0.467 0.278 82.5% 89.3% 82.2% 89.1% 93.1% 87.7%
50 100  0.192 0.348 0.212 81.8% 89.6% 82.6% 91.1% 93.8% 90.0%

100 50 0.176 0.339 0.196 80.2% 86.7% 80.1% 86.5% 90.5% 85.4%

100 100 0.121 0.227 0.134 83.5% 89.3% 84.2% 90.7% 93.1% 90.7%

4 50 50 0.255 0.473 0.284 82.3% 90.0% 82.4% 86.5% 92.7% 87.3%
50 100  0.187 0.344 0.207 84.1% 90.6% 84.9% 87.9% 94.0% 88.7%

100 50 0.193 0.355 0.213 86.4% 90.8% 87.0% 89.0% 92.5% 89.5%

100 100  0.127 0.231 0.139 86.4% 91.5% 86.8% 89.8% 92.9% 89.6%

5 50 50 0.319 0.568 0.359 91.9% 94.2% 91.3% 93.0% 96.0% 93.1%
50 100  0.255 0.421 0.265 92.1% 93.5% 91.1% 93.3% 95.5% 93.9%

100 50 0.258 0.428 0.267 92.4% 94.3% 92.4% 93.7% 95.8% 93.6%

100 100  0.156 0.266 0.165 94.6% 95.5% 92.8% 95.3% 96.7% 94.6%

Note: We report the mean squared errors (MSE) of Cj; and the coverage probabilities (CP) of the 95% confidence
intervals (CIs) for Ft075. Each entry is observed with probability ¢ = 0.9. We consider the feasible estimates with £ =0
and £ = £* and the oracle estimate that is obtained using the information of R® and missing observations. The standard
CI’s and the robust CI’s are constructed using f‘g;)t and f‘ng)t in Section 2.4, respectively.

on the true number of factors have slightly slower MSE than those based based on the estimated

number of factors.

D.3 Determining the number of factors with heterogeneous missing

In this subsection, we evaluate the methods of determining the number of factors when the missing
is heterogeneous. Specifically, we consider two missing mechanisms that are also considered by Zhu,

Wang and Samworth (2019):

Case A: P(gi = 1) = piq for all (i,t)’s, where p;’s are i.i.d. U[0.5, 1] and ¢’s are i.i.d. UJ[0.5,
1];

Case B: P(giy = 1) =0.3 for i < N/2, and g;; = 1 for all i > N/2.

The DGPs are the same as those considered in Section 4.

Table A5 presents the under/over-estimation rate in case A. Thus, all entries of X are observed
with a different probability. In this case, CV continue to accurately estimate the number of factors.
CV and M-IC show an obvious pattern of convergence. M-ED shows a pattern of convergence but
has considerable under-estimation rate for all DGPs. Both M-GR, and M-ER almost always under-

estimate the number of factors. M-PC tends to over-estimate the number of factors.
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Table A3: Mean squared errors and coverage probability of confidence intervals of infeasible estimates with

missing data (¢ = 0.7)

MSE of Cj;; CP of Standard CI CP of Robust CI

DCP N T Cﬁi(toracle) é;;)) C”,Z(Z*) Ft(oracle) Ft(O) Ft(f*) Ft(oracle) Ft(O) Ft(f*)
1 50 50 0.250 1.493 0.425 91.1% 96.2% 86.0% 93.4% 98.4% 90.4%
50 100  0.186 0.994 0.290 91.3% 94.3% 89.6% 93.3% 96.4% 92.5%

100 50 0.187 1.042 0.293 91.6% 95.9% 91.1% 92.8% 97.7% 92.1%

100 100 0.124 0.613 0.185 94.0% 95.5% 91.8% 95.2% 96.6% 94.1%

2 50 50 0.284 1.406 0.414 87.6% 94.8% 84.1% 90.6% 97.8% 88.6%
50 100  0.197 0.933 0.282 89.4% 95.7% 87.7% 92.3% 97.0% 91.0%

100 50 0.229 0.997 0.312 88.3% 96.0% 87.8% 88.6% 98.1% 91.0%

100 100  0.142 0.604 0.193 92.3% 96.9% 92.0% 92.9% 98.1% 93.4%

3 50 50 0.248 1.388 0.388 82.5% 93.4% 79.8% 89.1% 97.2% 85.4%
50 100  0.192 0.928 0.278 81.8% 92.8% 82.3% 91.1% 96.3% 88.3%

100 50 0.176 0.963 0.263 80.2% 94.3% 80.1% 86.5% 96.8% 84.4%

100 100 0.121 0.588 0.173 83.5% 93.1% 86.4% 90.7% 96.1% 90.4%

4 50 50 0.255 1.391 0.393 82.3% 93.7% 81.5% 86.5% 98.0% 86.5%
50 100  0.187 0.934 0.273 84.1% 94.4% 85.1% 87.9% 97.6% 89.2%

100 50 0.193 0.977 0.280 86.4% 95.8% 87.9% 89.0% 97.4% 90.3%

100 100  0.127 0.591 0.179 86.4% 93.4% 87.0% 89.8% 95.4% 90.1%

5 50 50 0.319 1.614 0.523 91.9% 96.9% 86.2% 93.0% 98.5% 90.5%
50 100  0.255 1.126 0.382 92.1% 94.4% 90.2% 93.3% 96.2% 93.1%

100 50 0.258 1.177 0.387 92.4% 96.2% 91.1% 93.7% 98.2% 92.0%

100 100  0.156 0.695 0.238 94.6% 95.7% 92.3% 95.3% 96.9% 93.7%

Note: We report the mean squared errors (MSE) of Ci: and the coverage probabilities (CP) of the 95% confidence

intervals (CIs) for F?’s. Each entry is observed with probability ¢ = 0.7. We consider the feasible estimates with £ =0

and £ = £*, and the oracle estimate that is obtained using the information of R® and missing observations. The standard
2)

gt in Section 2.4, respectively.

CI’s and the robust CI’s are constructed using f‘%),t and f‘g
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Table A4: Mean squared errors and coverage probability of confidence intervals of infeasible estimates with
missing data (¢ = 0.9)

MSE of Cj: CP of Standard CI CP of Robust CI

DGP N T Cﬂi(toracle) é(O) CA,Z(Z*) Ft(oracle) Ft(O) Ft(i*) Ft(oracle) Ft(O) Ft(é*)
1 50 50 0.250 0.488 0.285 91.1% 93.5% 90.4% 93.4% 96.2% 93.2%
50 100  0.186 0.356 0.210 91.3% 93.3% 90.9% 93.3% 95.6% 93.5%

100 50 0.187 0.360 0.211 91.6% 94.4% 92.2% 92.8% 95.8% 92.9%

100 100  0.124 0.234 0.139 94.0% 95.4% 92.7% 95.2% 96.7% 94.5%

2 50 50 0.284 0.502 0.311 87.6% 91.4% 86.7% 90.6% 94.1% 89.8%
50 100 0.197 0.355 0.217 89.4% 93.4% 90.3% 92.3% 95.5% 93.0%

100 50 0.229 0.389 0.248 88.3% 93.3% 89.6% 88.6% 95.0% 90.9%

100 100 0.142 0.247 0.154 92.3% 95.0% 92.2% 92.9% 95.5% 93.1%

3 50 50 0.248 0.467 0.277 82.5% 89.3% 82.2% 89.1% 93.1% 87.7%
50 100  0.192 0.348 0.212 81.8% 89.6% 82.6% 91.1% 93.8% 90.0%

100 50 0.176 0.339 0.196 80.2% 86.7% 80.1% 86.5% 90.5% 85.4%

100 100  0.121 0.227 0.134 83.5% 89.3% 84.2% 90.7% 93.1% 90.7%

4 50 50 0.255 0.473 0.284 82.3% 90.0% 82.4% 86.5% 92.7% 87.2%
50 100  0.187 0.344 0.207 84.1% 90.6% 84.9% 87.9% 94.0% 88.7%

100 50 0.193 0.355 0.213 86.4% 90.8% 87.0% 89.0% 92.5% 89.5%

100 100  0.127 0.231 0.139 86.4% 91.5% 86.8% 89.8% 92.9% 89.6%

5 50 50 0.319 0.580 0.366 91.9% 94.0% 91.0% 93.0% 96.0% 93.1%
50 100  0.255 0.429 0.274 92.1% 93.5% 91.1% 93.3% 95.5% 94.0%

100 50 0.258 0.440 0.279 92.4% 94.4% 92.4% 93.7% 95.9% 93.7%

100 100  0.156 0.273 0.173 94.6% 95.5% 92.9% 95.3% 96.7% 94.6%

Note: We report the mean squared errors (MSE) of Cy¢ and the coverage probabilities (CP) of the 95% confidence

intervals (CIs) for F’s. Each entry is observed with probability ¢ = 0.9. We consider the infeasible estimates with £ =0
and £ = £* using correct number of factors. We consider the feasible estimates with £ = 0 and £ = £*, and the oracle
estimate that is obtained using the information of R? and missing observations. The standard CI’s and the robust CI’s are

constructed using TV and I?  in Section 2.4, respectively.
& lig 1g,t P Y
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Table A5: Under/Over-estimation rate (%) with heterogeneous missing data (Case A)

DGP N T cv cV M-ED  M-GR  MER  M-PC M-IC
T 50 50 81.3/0.2 285/00 77.4/62 99.6/0.0 99.9/0.0 0.0/948 0.0/77.9
50 100 55.4/0.1  2.0/0.0  68.6/3.4 99.9/0.0 100.0/0.0 0.0/74.1  0.0/41.3
100 50 59.4/0.5  3.4/0.0  69.0/5.2 99.4/0.0 100.0/0.0 0.0/68.6  0.0/35.5
100 100 14.8/0.3  0.0/0.0  37.0/1.6 99.9/0.0 99.9/0.0 0.0/33.0 0.0/14.6
2 50 50 77.7/02 17.4/00 744/57 99.9/0.0 100.0/0.0 0.0/348 0.0/62.3
50 100 46.5/0.0  0.5/0.0  63.1/2.7  99.9/0.0 100.0/0.0 0.0/42.8  0.0/15.4
100 50 53.3/0.1  1.8/0.0  66.1/4.8 99.7/0.0  99.9/0.0 0.0/61.1  0.0/34.0
100 100 10.3/0.2  0.0/0.0  29.4/1.0 100.0/0.0 100.0/0.0 0.0/185  0.0/5.6
3 50 50 80.6/0.0 204/0.0 78.6/5.7 99.9/0.0 100.0/0.0 0.0/83.6 0.0/57.4
50 100 46.9/0.0  1.2/0.0  64.0/2.7 100.0/0.0 100.0/0.0 0.0/50.2  0.0/19.4
100 50  55.0/0.3  2.1/0.0  67.0/4.0 99.7/0.0  99.8/0.0  0.0/30.8  0.0/9.6
100 100 9.8/0.2  0.0/0.0  33.7/1.0 99.9/0.0 100.0/0.0 0.0/6.9  0.0/1.0
I 50 50 77.6/0.1 200/00 752/55 99.6/0.0 99.8/0.0 0.0/794 0.1/47.6
50 100 48.7/0.2  1.2/0.0  66.5/3.0 99.7/0.0 100.0/0.0 0.0/32.6  0.0/7.7
100 50 55.4/0.1  1.9/0.0  65.1/3.3 99.8/0.0 100.0/0.0 0.0/26.4  0.0/8.1
100 100 10.7/0.0  0.0/0.0  31.0/1.2 99.8/0.0 100.0/0.0 0.0/3.1  0.0/0.5
5 50 50 795/15 33.2/13 742/92 99.6/0.0 99.8/0.0 0.0/97.0 0.0/90.6
50 100 54.9/1.8  4.6/1.7  67.8/5.0 99.9/0.0 100.0/0.0 0.0/91.5  0.0/81.7
100 50 586/20 6.1/21  68.0/7.2 99.7/0.0 100.0/0.0 0.0/89.9  0.0/77.5
100 100 14.6/49  0.1/0.9  38.2/47 99.7/0.0 99.9/0.0 0.0/84.7  0.0/74.0

Note: We report the under/over-estimation rate with heterogeneous missing data in Case A. We consider CV and CV
with leave-out probability 1 - p = 0.1. For the comparison purpose, we also consider the M-ED,M-ER, M-PC, and
M-IC, which are modified from ED of Onatski (2010), GR and ER of Ahn and Horenstein (2013), and PC and IC of
Bai and Ng (2002), respectively. The number of replications is 1000.

Table A6 presents the under/over-estimation rate in case B. Thus, only half of the columns
contain missing observations while the other half do not. The CV methods, M-ED, M-PC and M-1C
perform well. oV again dominates the other methods for all cases. M-GR and M-ER continue to
severely under-estimate the number of factors.

In both cases, when the missing at random assumption fails, the CV methods still provide accurate
estimation results. We conjecture that our theoretical analysis can be extended to allow more general

missing mechanisms. It is an important and exciting topic, which is left for future research.
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Table A6: Under/Over-estimation rate (%) with heterogeneous missing data (Case B)

DGP N T cv cv M-ED M-GR  M-ER  M-PC M-IC
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