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Abstract

In this paper, we propose a jackknife method to determine the type of fixed effects in three-dimensional
panel data models. We show that with probability approaching 1, the method can select the correct
type of fixed effects in the presence of only weak serial or cross-sectional dependence among the error
terms. In the presence of strong serial correlation, we propose a modified jackknife method and justify its
selection consistency. Monte Carlo simulations demonstrate the excellent finite sample performance of our
method. Applications to two datasets in macroeconomics and international trade reveal the usefulness of

our method.
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1 Introduction

Standard two-dimensional (2-D) fixed effects panel data models (see, e.g., Baltagi (2013) and Hsiao (2014))
have the advantage of modeling heterogeneity by introducing time effect ();) and individual effect (o;). In
recent years, three-dimensional (3-D) panel data models are employed to study various phenomena in many

economic fields, such as international trade, transportation, labor, housing, and migration (see, e.g., Métyds

*We sincerely thank the editor, the guest editor and two anonymous referees for their constructive comments that help to
improve the quality of the paper. We thank Laszlo Balazsi, Laszlo Métyas, and Juliana Y. Sun for sharing their datasets.
We thank Yoon-Jae Whang and the participants at the 2017 International Panel Data Conference in Thessaloniki, Greece,
the 3rd Guangzhou Econometrics Workshop and CUHK Workshop on Econometrics. Lu acknowledges the funding support
from the Hong Kong University of Science and Technology (Grant SBI1I6BM28 and SBI17BM18) and the National Natural
Science Foundation of China (Grant 71773146). Su acknowledges the Singapore Ministry of Education for Academic Research
Fund under Grant MOE2012-T2-2-021 and the funding support provided by the Lee Kong Chian Fund for Excellence. Address
correspondence to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford Road, Singapore, 178903;
Phone: +65 6828 0386; E-mail: ljsu@smu.edu.sg.



(2017) for a recent review). In the trade literature, the 2-D panel model was firstly extended to the 3-D
framework by Métyds (1997) who considered Model 2 in (1.1) below. Thereafter, other 3-D panel data models
were proposed in the trade literature. Egger and Pfaffermayr (2003) proposed a panel gravity model taking
into account the bilateral interaction effect by including the bilateral specific effect v,;. Baltagi and Egger
(2003), Cheng and Wall (2005), Baldwin and Taglioni (2006) and Baier and Bergstrand (2007) also proposed
several variations of the 3-D fixed effects panel data models. Balazsi, Matyds, and Wansbeek (2018) showed
that the least squares dummy variable (LSDV) method can be applied to estimate the coefficient consistently
and illustrated that these results can be generalized for higher dimensional panel data models.

In the 2-D fixed effects panel data models, there are only four types of specifications of fixed effects in
the absence of interactive fixed effects. However, in the 3-D models, the number of possible specifications
of fixed effects can be as large as sixty-four (26) theoretically. Therefore, it is a highly empirically relevant
question to determine which model to use in practice. The goal of this paper is to provide a practical method
to select the correct specification of fixed effects in the 3-D panel data models. Specifically, we consider seven

commonly used candidate models as suggested by Balazsi, Métyds, and Wansbeek (2017, 2018):

Model 1: it = @38 + wijt,

Model 21 yijt = @38 + i + 7, + M + wije,

Model 3 :  y;;¢ = xéjtﬂ T Vg T Uigts

Model 4 : it = 2}, 8 + 745 + At + wije, (1.1)
Model 5 y;5¢ = x;jtb’ + oy + wije,

Model 6 : it = 27,8 + cir + afy + wije,

Model 7: y;¢ = x;jtﬂ Yy Qe O‘;t + Uijt,

fori=1,..,N,j=1,..,M,and t = 1,...,T, where y;;; is the dependent variable, e.g., the volumes of trades
(exports) from country ¢ to country j in year ¢, x;;¢ is a k x 1 vector of regressors that contains a constant
term and may also include the lagged dependent variables, u;;; is the idiosyncratic error term, and a;, 7;,
Aty Vijs @y, and ayy are fixed effects that are treated as fixed parameters to be estimated.

In practice, there are two main motivations for model selection. First, an economic theory may suggest
certain types of models and it would be interesting to know which model is likely to be true empirically. In
our context, different specifications of fixed effects may be interpreted differently and it would be useful to
understand the types of interactions of the unobserved heterogeneities. For example, consider the gravity
model in international trade where y;;; is the trade volume (exports) from country ¢ to country j in year
t. Country fixed effects have been argued to be important for the gravity models (see, e.g., Feenstra (2016,
p.143)), as they represent unobservable multilateral resistance levels termed by Anderson and van Wincoop
(2003). Therefore, if the multilateral resistance levels are time-varying, represented by c; and aj, here, the
trade theory would support Model 6 and Model 7. Our method can select the correct model consistently
and thus can be used to confirm or reject the theory. Taking another example, let y;;; be the wage for
worker-type 4 employed by firm j at time ¢. In an assortative matching model, Shimer and Smith (2000)
argue that there might be complementarities between firms’ productivity and workers’ ability. Given that
firms’ productivity and workers’ ability are typically unobservable to econometricians, their theory would

suggest that the interaction term ~,; is important and Model 3, 4 and 7 would be appropriate.



Second, model selection is important for the estimation and inference for the parameter of interest (typi-
cally 8 here). If we apply a misspecified model that is smaller than the true model, we may suffer from the
notorious omitted variable bias (OVB) issue. If we adopt a larger model that nests the true model, we may
have substantial efficiency loss as we have included many redundant dummy variables generated by the fixed
effects. When N, M, and T are all large, the number of redundant dummy variables can be huge and thus
tends to result in enormous efficiency loss. For this reason, it is not always desirable to adopt the largest
model (Model 7) in empirical studies. To illustrate this point, we conduct a simple simulation exercise where

the true data generating process (DGP) is
Yijt = Bo + B1Yiji—1 + Uije, (1.2)

(BosB1) = (1,0.75) and w;;¢’s are IID N (0,1) random variables. Hence, here Model 1 is the true model.
Table 1 compares the mean squared errors (MSEs) of the estimates of 3; based on Models 1-7. Given this
is a dynamic model, we consider both non-bias corrected estimators and bias-corrected estimators where the
bias correction is based on the half-panel jackknife method as proposed in Dhaene and Jochmans (2015) or
the analytic formula derived in online Appendix D. For both types of estimators, the estimators based on the
true model (Model 1) achieve the smallest MSEs as expected. Adopting larger model results in substantial
efficiency loss. For example, when (N, M, T) = (10,10, 10), the MSE of the non-biased corrected estimator
based on Model 7 is 100 times as large as that based on Model 1. The bias-corrected estimator based on the
analytic formula works but not as well as the jackknife one. For the jackknife bias-corrected estimator, the
MSE based on Model 7 is about seven times as large as that based on Model 1. Interestingly, we find that
the estimates based on Models 3, 4 and 7 perform similarly in finite samples. Following the lead of Balazsi et
al. (2018), we can study the asymptotic Nickell bias of the least squares dummy variable (LSDV) estimator
Bgm) of B, in (1.2) based on Model m. Table D2 in the online supplement reports the Nickell biases. It
suggests that when N, M, and T pass to infinity jointly at the same rate as we have here in Table 1, the
) M, whereas the asymptotic biases

asymptotic biases of B im ,m = 3,4,7, share the same dominant term

of the other four estimators (i.e., B(ll), B?), B§5), 3(16)) are all 0(%). This observation, in conjunction with the
fact that all seven estimators share the same asymptotic variance when Model 1 is true and given by (1.2),
explains why the performance of the estimators based on Models 3, 4 and 7 are similar in Table 1 despite
the fact that Model 7 contains far more parameters than Models 3 and 4.

Given the existence of many flexible ways of including fixed effects in the 3-D panel data models, the
specification problem is more severe and complicated than the 2-D framework. To the best of our knowledge,
so far there exists no systematic way of determining fixed effects specifications in the 3-D panel models
in the literature. In the traditional 2-D models, Wu and Li (2014) proposed two Hausman-type tests for
individual and time effects in a two-way error component model. Their method involves multiple hypothesis
tests and suffers from severe size distortion in the 3-D case because the number of hypothesis tests increases
exponentially as the number of models increases. Most recently Lu and Su (2019a) proposed a jackknife

methodology to determine the inclusion of individual effects, time effects, or both through the leave-one-out

11f we further decompose MSE into bias and variance terms in the simulations, we can also find that for M3, M4 and M7,
both the bias and variance terms are important no matter whether bias-correction is corrected. For M1, M2, M5 and M6, the
bias terms are relatively small, and therefore, the variance terms play a dominant role regardless of whether one corrects the

bias or not.



Table 1: Comparisons of MSEs of 8, (true model: Model 1)

Adopted Models
M1 M2 M3 M4 M5 M6 M7
N=10, M=10, T=5 8.76 19.42 1720.48 1720.35 9.62 10.22  1726.75
Non-bias N=20, M=20, T=5  2.25 4.73 1700.29 1700.29 2.41 2.56 1702.56
correction N=10, M=10, T=10 4.28 10.38 442.65 443.36 4.67 5.16 446.09
N=10, M=10, T=20 2.12 4.23 101.52 101.52 2.34 2.75 102.58
N=20, M=20, T=20 0.60 1.14 98.77 98.76 0.64 0.67 98.87
Bias N=10, M=10, T=5 9.20 21.21 118.65 119.11 10.14 10.63 138.52
correction N=20, M=20, T=5  2.34 5.23 59.26 59.25 2.50 2.66 61.42
based on N=10, M=10, T=10 4.28 7.53 22.12 22.72 4.69 5.16 28.95

jackknife N=10, M=10, T=20 2.11 2.58 7.7 7.91 2.34 2.74 9.47
N=20, M=20, T=20 0.60 0.72 2.65 2.66 0.64 0.67 2.88
Bias N=10, M=10, T=5 8.72 28.80 97.64 98.11 9.62 10.22 107.43

correction N=20, M=20, T=5 2.24 6.99 69.12 69.13 241 2.56 70.74
based on N=10, M=10, T=10 4.23  6.50 23.91 24.20 4.67  5.16 27.02
the analytic N=10, M=10, T=20 2.12 2.51 5.21 5.27 2.34 2.75 6.19
formula N=20, M=20, T=20 0.60 0.66 2.43 2.44 0.64 0.67 2.57
Note: Numbers in the main entries are MSEsx 10 of the estimates of 3,. The number of
replications is 1000.

cross-validation (CV) in the 2-D framework. For a detailed review of the specification of fixed effects in the
2-D models, see Lu and Su (2019a).

Jackknife or CV has been applied to conduct model selection in many different contexts, though often
without rigorous justification.? In the panel context, although Lu and Su (2019a) showed that the jackknife
method could consistently select the correct model in 2-D panels, it was unclear whether jackknife would
work for 3-D panels. There are substantial differences between the 2-D and 3-D cases. First, there are
a large number of candidate models in 3-D panels that require different asymptotic analyses. The fixed
effect specifications are much more complicated in the 3-D case than those in the 2-D case. For example, in
Model 7 above, to control for the fixed effects, we need to include (NM + NT + MT — N — M — T) dummy
variables. We focus on the seven models in (1.1) that are commonly used in practice but conjecture that our
method remains valid for a larger subset of candidate models. Because we allow each of these seven models
to be either true or misspecified, there are 49 scenarios under our investigation. To prove the selection
consistency, we need to carefully compare the correctly specified models and misspecified models under these
49 scenarios. Second, to expedite the asymptotic analysis, we allow N, M, and T to pass to infinity jointly
and the asymptotic analysis along the three dimensions is quite challenging. We have to pay particular
attention to the interactions of the three dimensions in our proofs, as we do not impose any conditions on
the relative rates at which N, M, and T pass to infinity. Therefore, it is much more challenging to show the
selection consistency in the 3-D case.

Despite the involved theoretical proofs, the new methodology is easy to implement and has excellent

2The jackknife method was originally proposed by Quenouille (1956) and Tukey (1958). It can be used for different purposes,
such as bias-correction, inference and model selection. The theoretical work on jackknife for model specification includes Allen
(1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987), Efron (1983, 1986), Picard and Cook (1984), Andrews
(1991), Shao (1993), Hansen and Racine (2012), and Lu and Su (2015), among others.



performance in Monte Carlo simulations. In particular, it can easily handle unbalanced panels, which is
a common phenomenon in multi-dimensional panel data. Asymptotically, we prove that this method can
determine the correct model with probability approaching one as all the three dimensions go to infinity.
As well, we argue that this method can be extended to higher-dimensional fixed effects panel data models.
Although here we focus on seven popular candidate models in our asymptotic theory, we expect that our
methodology can be applied to the other 3-D models or even 3-D nonlinear panels.

It is worth mentioning that here we focus on the selection consistency of our approach and leave the
post-selection inference issue untouched. For the post-selection estimation and inference for the parameter of
interest (f3), it is desirable to consider uniform inference, which remains a challenging question in the model
selection literature and certainly goes beyond the scope of this paper.

We provide two empirical applications to illustrate the usefulness of our new method. In the first ap-
plication, we apply our method to the dataset used in Samaniego and Sun (2015), where they adopt Model
7 to investigate which technological characteristics lead industries to experience the most difficulty during
the recession period. The dependent variable is the growth of industry j in country 7 at time ¢ and the
key independent variable is the interaction term between the recession indicator and industry technological
characteristics. Our method finds that Model 6 is an appropriate model and country-industry fixed effects
are redundant. In the second application, we apply our method to gravity equations in international trade.
The dependent variable is the logarithm of the export of country i to country j in year ¢, and the indepen-
dent variables include the logarithm of the sum of country i’s GDP and country j's GDP in year ¢ and the
logarithm of the sum of country ¢’s population and country j’s population in year t. We show that the largest
model (Model 7) is an appropriate model for gravity equations.

The rest of the paper is structured as follows. In Section 2, we discuss the 3-D panels with different types
of fixed effects and introduce the notation to put all these models in a unified framework. We propose the
jackknife method to determine the types of fixed effects in the 3-D panels and study its asymptotic properties
in Section 3. We propose a modified jackknife method to incorporate strong serial dependence and study its
consistency in Section 4. Section 5 reports Monte Carlo simulation results and compares our new methods
with information criterion (IC)-based methods for both static and dynamic panel DGPs. In Section 6, we
apply our method to two datasets to study (i) the interaction between technology and business cycles and
(74) the gravity models in international trade. Section 7 concludes. The proof of the main result (Theorem
3.1) is relegated to Appendix A. The proof of Theorem 4.1, the proofs of the technical lemmas and the
derivation of the Nickell biases for the panel AR(1) models are relegated to the online Appendices B, C, and
D, respectively.

Notation. For an m x n real matrix A, we denote its transpose as A’, its Frobenius norm as || 4| and its
.Let Py = A(A’A)"" A" and My = I,,, — Pa, where I,,, denotes an m x m identity

matrix. When A = {a;;} is symmetric, we use Amax (4) and Ayin (A) to denote its maximum and minimum

spectral norm as [|Al|,
eigenvalues, respectively. Let J,,, = t;,t), where ¢, denotes an m x 1 vector of ones. Let ® denote Kronecker
product and -2 convergence in probability. We use (N, M,T) — oo to denote that N, M, and T pass to
infinity jointly.



2 Models and Notation

We consider a 3-D panel where the dependent and independent variables are given by ¥;;+ and x;;;, respec-
tively, fori =1,...,N, j =1,...,M;, and t = 1, ..., Tj;. For notational simplicity, we will assume that M; = M
for each i and T;; = T for each pair (¢,j) and remark that our asymptotic theory continues to hold for the
general case of unbalanced panels but with more complicated notation. As Balazsi, Matyds, and Wansbeek
(2017, 2018) remark, there are 2° ways to formulate the fixed effects in a 3-D panel, but only a small subset
of these are considered and applied in empirical applications. Following these authors, we only consider the
selection of the seven models as in (1.1) that are frequently employed.

Model 1 is a pooled regression model that ignores unobserved heterogeneity. Model 2 allows the specific
effects to enter the model additively. Model 3 only allows a pairwise interaction between the i- and j-specific
fixed effects but the model can be studied as if one studies the usual 2-D model with individual fixed effects
by treating observation along the (4, j) dimensions as one single dimension. Similarly, we can study Model 4
as if we study the usual 2-D model with two-way error components by treating (i, j) dimensions as a single
dimension. Model 5 allows the interaction between the j- and t-specific effects while Model 6 allows two
pairwise interactions of specific effects. Model 7 encompasses all three pairwise effects and nests Models 1-6
as special cases.

Model 2 has been frequently adopted in empirical research; see Matyds (1997), Goldhaber, Brewer, and
Anderson (1999), Egger (2000), Davis (2002), Egger and Pfaffermayr (2003), among others. Mdtyds (1997)
applies Model 2 to estimate a gravity equation where the dependent variable is the logarithm of the trade
(exports) from country ¢ to country j at time t. Egger (2000) considers the Hausman test for random effects
versus fixed effects in Model 2 for the gravity equation considered by Matyds (1997) and provides arguments
for the superiority of a fixed effects specification. Goldhaber, Brewer, and Anderson (1999) apply Model 2
with random effects to determine how much of the achievement on a 10th-grade standardized test can be
explained by observable schooling resources and unobservable school, teacher, and class effects. Davis (2002)
considers both fixed effects and random effects estimation of Model 2 using data from a retail market where
the three dimensions of data variation are products sold in various locations over time.

Egger and Pfaffermayr (2003, EP) extend Model 2 to include the exporter-by-importer (bilateral) inter-
action effects 7;; and the time effect as in Model 4. EP find evidence that suggests that Model 4 is preferred
to the three-way error component specification in Model 2. Cheng and Wall (2005) estimate the gravity
equation for bilateral trade flows by using Model 4 with fixed effects and compare with the results from using
Model 2. They also find Model 4 is preferred to Model 2. Baltagi, Egger, and Pfaffermayr (2003, BEP)
consider fixed effects estimation of various models for bilateral trade data, including Models 5, 6, and 7. See
also Baldwin and Taglioni (2006). Baier and Bergstrand (2007) estimate the panel gravity equations with bi-
lateral fixed or/and country-and-time effects (Models 3, 7) and they consider both within transformation and
first-differencing. Berthélemy and Tichit (2004) estimate a censored version of Model 5 with random effects
where the dependent variable is the aid the ith recipient receives from the jth donor at time ¢. Samaniego
and Sun (2015) apply Model 7 with fixed effects to study the growth of industry j in country ¢ at time ¢.

With seven models, there are 7 x 7 cases of model fitting to be considered. In Table 2, we summarize all

the cases for model fitting. In each row, the fitting case for one true model is presented. For example, when



Model 2 is the true model, Models 1, 3, and 5 are under-fitted and Models 4, 6, and 7 are over-fitted. In

the next section, we propose a method to select the just-fitted model. In the theoretical analysis, we need to

discuss over-fitted and under-fitted cases separately.

Table 2: Cases for model fitting

True model Adopted model
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Model 1 0 + + + + + +
Model 2 — 0 — + — + +
Model 3 — - 0 + - - +
Model 4 — — — 0 - - +
Model 5 - - - — 0 + +
Model 6 — — — — - 0 +
Model 7 — — — — — — 0

Note: “+47”, “0”, and “—” represent over-fitted, just-fitted and under-fitted cases, respectively.

Note that the fixed effects parameters are not separately identified without restrictions. To unify the

theory and simplify our asymptotic analysis, we impose the following identification restrictions in Models

2-7:

Model 2 :
Model 3 :
Model 4 :
Model 5 :
Model 6 :
Model 7 :

Z?Ll a; =0, Z]Ail v; =0, Zf:l Ay =0,

>, Zj\; Yi; =0,

Zi]il zj; Yij = 0, 23:1 At =0,

Z?; Zthl oy =0,

Zf\il ay: = 0 for each t, Zﬁl Zthl ajy =0,

Z]M:1 7,5 = 0 for each i, Zle aj, = 0 for each j, Zf\’:1 a;; = 0 for each t.

That is, there are 3 restrictions in Model 2, 1 restriction in Model 3, 2 restrictions in Model 4, 1 restriction
in Model 5, T + 1 restrictions in Model 6, and N + M + T restrictions in Model 7.

We stack the observations in a way such that index 4 goes the slowest, then j, and finally ¢ the fastest; e.g.,

Y = (Y111, V11T o0y YIM Ly ooos YLMTs o3 YN11s ++os YNIT s YN M1 - YNMm7) - Define X and U analogously.
Then we can write Models 1-7 in a uniform way as

Y = XB+ Dyt + U = Znm + U,

where Z,,, = (X, D,,) and 0,, = (6/, W;n)/. Here D,,’s are the dummy matrices that incorporate the above

identification restrictions:

Dy: ©

Dy: (Dyp,Dy,Dr)
Ds: Dyj

Dy: (Dyj,Dr)
Ds: Dyp

D¢ : (Dir,Dyr)
D7: (D?JvD?TvD?}T)



where

[ Inoy Ipg—q Ir_y
Dy = , Ry @iy, Dy =18 ® , Qur, Dr =iy @ty ® , )
L “iN-1 -1 —lr_1
[ INM—I IMT—I
D;; = . Qur, Dy =1y ® , , and
“INM-1 —tMT-1
[ Inoy Ing—q T-1
* * *
Dir = p Qv @ Ir, Diy=IN® / Qur, Dyp =in @Iy ® / ’
L —iN—1 —lyr—1 b
and 7,,’s are the coefficients of the dummy variables in D,,’s:
™ = @,
. !/
T2 = (051’"'704N71a71a"'77M—17)\15"'3AT71) )
— /
T3 = (71,17 o V1,My YN, s “‘7'7N,M—1) )
— /
T4 = (71717 "'771,M; "'7’YN717 "'77N,M—17 >‘1a ceey /\T—l) )
/
s = (QU 15y QLT oy OM 1,15 o0y OM 1T OM,15 s M T—1)
_ * * * * * * /
Tg = (041,1,-~-,0¢1,T,m,OéN—l,la~~,CVN—1,Ta041,1a~~7041,Ta RPRC TV I ERRITN ) VN I o aM,l""vaM,T—l) )
J— * *
T = (71’17 "‘7’71,M717 "'7’7N,17 "'77N,M717 041,1, --'7041,T7 veny OéNfl,la ceny OéNfl,Ta 04171, veny al,Tfh ceey
* * /
g 15 Q1)
_ / U . . _
Let d};; ,,, and 2, ., = (i1, d}jy ) denote typical rows of Dy, and Z,, respectively, for m = 2,...,7. Let

Z1 = X and 24,1 = x45¢. 1t is easy to verify that
D]J_DJJ_DT, D[JJ_DT, D}kTJ_DJT, and D;TJ-D?JJ-D:;T’

where A | B means that A and B are orthogonal (A’B = 0 and B'A = 0) and A L B 1 C means A, B,
and C' are mutually orthogonal to each other. With such an orthogonal property, it is easy to calculate the
inverses of D! D,, and Z/ Z,, for m =2,...,7.

Throughout the paper, we will calculate various sample means. Define

1 N T 1 N M
Ui.. = m Zuijt, ﬂ.jA = ﬁ Zzuijt, Uy = W Zzuijt,

i=1 t=1 i=1 j=1

T N M T
Uij. = Z Uijt, Uip = MZUZJta gt = Nzumtv and U = ——— NMT Zzzumt

i=1 j=1t=1

Let @;.., 5., T..t, Tij., Ti-t, T.;+ and T be defined analogously.

3 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine the different types of fixed effects in
3-D panels. Then we introduce the assumptions that are needed for our asymptotic analysis and report the

consistency of the jackknife method.



3.1 The jackknife method

The OLS estimator of 0, = (B', 7T;n)l in Model m based on all NMT observations is given by

O = (@mfr’ ) (ZtZm) " Z0Y for m =1,2,...,T.

m m

We will also consider the leave-one-out estimator of 6,, with the (4, 7, t)th observation deleted from the sample:
A At N 4 , , -1,
Oijtm = (Bijt,m’ Wijt,m> = (Z’mZ’m - Zijumzijt,m) (Z,Y — Zijt,myijt) form=1,2,..,7,
where ¢ = 1,...,N, j =1,..,M, and t = 1,...,T. The out-of-sample predicted value for y;;; is defined as
Vijt,m = Zzl'jt7méijt,m = x;thijt,m +di iy Tijt,m- Our jackknife method is based on the following leave-one-out

cross-validation (CV) function:

T
Z Yijt — yzﬁ m 2 for m = 1,2,...,7.
t=1

Mz
NgE

CV (m)= T

i
I
I

1y

We propose to choose a model such that C'V (m) is minimized. Define

m = argmin CV (m).
1<m<7

We will show that under some regularity conditions, m is given by the true model with probability approaching

1 (w.p.a.1) when we assume that Models 1-7 contain the true model.

Remark 1. For certain dynamic panel models (such as Models 3, 4 and 7), bias correction can be needed
for the inference purpose contingent upon the rates at which N, M, and T pass to infinity. Nevertheless, our
purpose here is to determine the type of fixed effects. We show that our method can consistently select the
true model without the need for bias correction. Given the selected model, one can consider bias correction

as needed to make inferences.

Remark 2. In this paper, we focus on how to conduct model selection and do not consider the post-selection
inference issue. In practice, one can conduct pointwise inferences based on the selected model. But it is well
known that inferences based on the selected model may not be uniformly valid; see, e.g., Leeb and Potscher
(2005). It is challenging to conduct post-selection uniformly valid inferences. We leave this important issue

for future research.

3.2 Asymptotic theory under weak serial and cross-sectional dependence

Let Qm = 5apX'Mp, X for m = 2,..,7 and Q1 = wirr g 7 1<i<
and 3, ., = sz\; ZJNL Z?:l' Similarly, let >7; o >7; 15> 54 25205 and 32, abbreviate sz\; ijvip
ZZN:1 Z?:p ijvil 23:17 Zﬁvzp Zj]vip and Z;F:p respectively. To report the asymptotic property of the
jackknife method, we introduce some assumptions.

u?

Assumption A.1 (i) E(ui) = 0, max; j, E(uf;,) < C for some positive constant, and w777 >_; it Wigt

LA 53 > 0;
(i) max; ¢ [[z57]| = Op(NMT)*);



(iil) warp Zz]tu?ﬁ Oy (1) and w77 35 . llwigel|* = Op (1)

(iv) T = Op((NMT)™'/2), and 77 X'U = Op(NMT)~1/2);

(v) There exist positive constants ¢, and ¢q such that P(cy < Amin(Qm) < Amax(Qm) < o) — 1 for
m=1,..,7.

Assumption A.2. There are finite positive constants 52,, £ = 1,2, ...,6, such that
i) % Zzﬂf = Eiﬁ

i) 5F 2,7 252,

iii) % o E%t - 533;

V) N7 i U =T

V) % Zi,t ﬂz%t L 535§

Vi) 25 22, T B T,

Assumption A.3 (i)% >, (Ti.. — T)(Ti.. —T) = O, (MT)™1);

(i) & Y, (F. — )@ — 7' = O,((NT)~1);

(i) 7 Zt($ = )Tt —T)" = Op(NM)™1);

(IV) NM Z i,j (xm x)(fw _f)l = Op(T71)§
(
(vi

(
(
(
(
(
(

V)§T i, t(wzt —T)(@is —T) = Op(M);
Vi) 577 3254 (Toje = T)(Tje —T) = Op(N ).

Assumption A.4 (i) If Model 2 is the true model, there exist positive constants ¢, for m = 1,3,5
such that W Zmyt (§2ijt)m)2 2, ¥9.m and W Zmyt S2ijt,mUijt LN 0, where Soijt.m = a; +7; + At —
Z! Zm) " Z. Domo;

(ii) If Model 3 is the true model, there exist pOblthe constants @3 ,,, for m = 1,2,5,6 such that 5777 T it

zgt m(

2
(S3ijem)” = ©3.m and wpF D it S3ijt,mUijt 20, where §345¢.m = Yij = Zijt.m(ZmZm) " 2y, D
(iii) If Model 4 is the true model, there exist positive constants ©4m for m = 1,2,3,5,6 such that
2 _
NI\l/IT Zi,j,t (Saijt,m) = ©4,m and —N]bT Zi,j,t S4ijt,mUigjt % 0, where Sdijt,m = Vij+)\t—z§jt7m(Z7’qum) LZ! Dyma;
(iv) If Model 5 is the true model, there exist positive constants s ,, for m = 1,2,3,4 such that
2
AT it (Ssijtm)” > 05 and s S Ssijtmtige — 0, Where Ssijim = &y — 215 0 (ZinZm) " 2,
X D5s;
(v) If Model 6 is the true model, there exist positive constants ¢4, for m = 1,2,3,4,5 such that
2 X _
T gt (S6ijim)” = Pe,m > 0and simm 3o 4 Soijt,mUige — 0, Where Seijem = i+ =250 (Zin Zm)
XZ,:nDGﬂ'G;
(vi) If Model 7 is the true model, there exist positive constants 7, for m = 1,2,3,4,5,6 such that
2 p P * —
NAIT 2oi gt (Stigtsm)” = P and JapE 2, 5 STijemUije — 0, Where Grijem = vy Haur =215 i (Z Zm) ™"
XZ;LD77T7.

Assumption A.1(i)-(ii) imposes weak conditions on {u;j;} and {x;;;} , which can be verified under various
primitive conditions. For example, a sufficient condition for A.1(ii) is that max; ;; F ||Zl'ijt”4 < C < oo
Assumption A.1(iii) is imposed to ease the proof of Lemmas A.13 and A.14 in Appendix A and can be
relaxed at the cost of more lengthy arguments. Assumption A.1(iv) is weak and commonly assumed in panel
data models in the absence of endogeneity. Note that we permit x;;; to contain lagged dependent variables so

that dynamic panel data models are allowed. Assumption A.1(v) specifies the usual identification conditions
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for the fixed effects (FE) estimation of Models 1-7. Using Lemmas A.2-A.3 in Appendix A, we can readily

verify that Q,, = W ¥ it a“cg;rz)i:z(-;?)/ where

22 =z — (T —T) — (T —T) — (Tx —T),
o (3 — —
B8 = wie— @y —T),
o(4) Tijy — (Tij. —T) — (T4 — T
it —  Tijt — \Lij T)— (T4 —7),
o (b —
mz(_]t) = iy — (T —T),
Zi'gfz = Tt — (Ezﬁt *T..t) - (T.jt - f),
20 = zije— @i —Tiw) — (it — Tot) — (Tge — T3.).

Apparently, it is fine to allow z;;; to contain the constant term because of the location identification restric-
tions imposed in Models 2-7. On the surface, when all seven models are under consideration, x;;; cannot
contain a nonconstant term that is only varying over two of the three indices. In other words, x;;; needs
to vary over all three dimensions. Otherwise, it can be absorbed into fixed effects and its slope coefficient
cannot be estimated using the fixed effect regression. One simple example of z;;; that only varies over two
dimensions is the geographic distance (d;;) between country i and country j, which is typically time-invariant.
If 255 contains such regressors, we could consider two approaches. First, one can consider a small subset of
the seven models to incorporate certain regressors that have variations only along one or two dimensions.
Second, we can incorporate such regressors into the fixed effects in the corresponding model, perform the
model selection as usual and then consider the estimation of the marginal effect of such regressors in the
estimation step. For example, if other than the usual regressors in x;;; that vary over ¢,j and ¢t in Models
1-7, we also want to include d;; as a regressor in these models. Now we are considering the seven models as
follows:
Model 1:  yijr = 2};,8 + dig0 + i,
Model 2 y;5¢ = ac;jtﬂ + dijd + i + 5+ A+ g,
Model 3:  y;5¢ = xgjtﬁ + dijd + ;5 + wigt,
Model 4 y;jt = x;jt/B +dij0 + 75 + A+ wije,
Model 5: gt = x;jtﬂ + dij0 + oy + g,
Model 6 :  y;5¢ = ac;jtﬂ + dij¥ + g + &y + wije,
Model 7 y;5¢ = xgjtﬁ +dijd + i + e + Gy + wige,
In this case, we have an identification problem in Models 3, 4 and 7 because it is impossible to separately
identify d;;v and ,; without further restrictions. Nevertheless, effectively, we can rewrite Models 3, 4 and 7
respectively as
Model 3" yije = 27,8 + ;5 + wije,
Model 4" 1 yij¢ = 27,8 + 35 + A + wije,
Model 7" 1 yije = x5, 8+ 75 + e + &y + i,
where 7;; = d;;9 + 7,;;. One can continue to apply our jackknife method to select among Models 1, 2, 3', 4,

5, 6 and 7' by comparing the out-of-sample predictability.?

3If any one of Models 1, 2, 5, and 6 is selected, then there is no problem to identify ¥ along with 8. However, we cannot

identify 9 directly in Models 3, 4 and 7 from the usual fixed-effects estimation procedure when Model 3/, 4’ or 7’ is selected.

11



Assumption A.2 requires that {u;;;} be weakly dependent along either one of the three dimensions. For

example, Assumption A.2(iv) essentially requires that

T - 1 T T
1’7]

ij t=1s=1
should have a finite limit 52,. The latter condition is satisfied by the Davydov inequality if {u;;,¢ > 1} is
strong mixing with finite (2 4 §)-th moment and mixing coefficients «;; (-) such that «;; (7) = 7774 for some
> (24 9) /9; see, e.g., Bosq (1998, pp.19-20) or the online supplement of Su, Shi, and Phillips (2016). For
another example, Assumption A.2(i) requires that {u;;;} be weakly cross- sectionally dependent along the j-
dimension and weakly serially dependent as well such that M2 SN B(@2) = w8 Z SED DA DD S

FE (uijtuils) has a finite limit Eil. In the special case where u;j; is not correlated along either one of the three

dimensions, we can easily verify that 52, = 52 for £ = 1,...,6. In the presence of serial or cross-sectional
correlations, 52,’s are generally different from 2.

Similarly, Assumptions A.3 requires that {x;;} be weakly dependent along either one of the three di-
mensions. The conditions in this assumption can be verified via the Chebyshev or Markov inequality under
some conditions to ensure such weak dependence. For example, to Verify Assumption A.3(iv), by the Cauchy-
Schwarz inequality it is sufficient to verify each diagonal element of i+ > (Tig. —T)(Tij. —T) is Op(T1).

Let v; be a k x 1 vector that contains 1 in its Ith place and zeros elsewhere where [ =1, ..., k. Then
1
S = NI Z V;(Ei]ﬂ — T)(TU — T)/Vl
4,J

= ﬁ > i@ — B @ij)|[Ei. — B (Ti;.)]'vi — % > i@y — E@i)|[E - B ()] v

by ST~ B @) [~ B @) v
= S(1)—25(2)+ 5 (3), say.

Then S; = O,(T~1) provided E [S; (¢)] = O(T~!) for £ = 1,2, 3 by the Markov inequality. Again, the latter is
true under some weak dependence conditions. For example, if {x;;¢,t > 1} is strong mixing satisfying certain
mixing rate and moment conditions, then E [S; (1)] = w57z doig ZtT:1 ZZZICOV(I/ZI’ijt, vizijs) = O (T7h).
Similar claims hold for S; (2) and S; (3) . Note that Assumptions A.1(iii)-(iv), A.2, and A.3 imply the following

results:
i) % 3 T = Op(NMT) V2 + (MT)™);
1

(

(i) 77 > T4 =0 L(NMT)=2 4 (NT)™Y);
(iii) = Zt Ty = O, (NMT)~V2 + (NM)™Y):;
(iv) 757 v Sy TigTij. = Op(NMT) =2 4 T-1);
(V) FF Doi Titlhia = Op(NMT)~V2 4 M~1);
(vi) mzjﬂf Tellge = Op(NMT) Y2 4 N1,

In this case, we could consider the following two-step post-selection procedure to estimate ¢ if needed: 1) In the first step, we
obtain the consistent estimator %,; of ¥;; based on Model 3', 4’ or 7', whichever is selected; 2) In the second step, we run a
linear regression of 4;; on d;; to estimate ¥ under the additional identification restriction that d;; and v,; are uncorrelated. Of
course, one must take into account the estimation error from the first stage when making inference on 9. We leave the systematic

study of this issue to future research.
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For example, (i) holds because by the triangle and Cauchy-Schwarz inequalities and Assumptions A.1(iii)-(iv),
A.2(i) and A.3(i) we have

1 1
~ > ViE T = Y Vi (Fi. — ) Ui + vjTU

IN

1 1/2 1 1/2
{”ENZ@“ —T) (T ~ ) VZ} {N Z#} + vl fal
= O((MT)"/2)0,(MT)™*/?) + O, (NMT)~'/?).

Assumption A.4 specifies conditions to ensure that the under-fitted models will never be chosen asymp-
totically. The interpretations of the positive probability limit conditions in Assumption A.4 are easy. For
example, when Model 2 is the true model, Models 1, 3, and 5 are under-fitted. In this case, the positiveness
of ¢, ,,, Tequires that the additive fixed effects a; +v; + A+, when stacked into an NMT x 1 vector, should
not lie in the space spanned by the columns of the regressor matrix Z,, in Model m for m = 1, 3, and 5,
where we recall that Z; = X. Similarly, the zero probability limit conditions in Assumption A.4 require that
the interactions between the idiosyncratic error terms and the fixed effects in the under-fitted models are
asymptotically negligible.

Note that we allow for both weak cross-sectional and serial dependence of unknown form in {(xijt, uijt)}
even though some results derived below need further constraints. We do not need identical distributions or
homoskedasticity along either one of the three dimensions, neither do we need to assume mean or covariance
stationarity along either dimension. In this sense, we say our results below apply to a variety of 3-D linear

panel data models in practice.
Given Assumptions A.1-A.4, we are ready to state our first main result.

2
u

Theorem 3.1 Suppose that Assumptions A.1-A.4 hold. Suppose that maxlgmg;{ﬁz’m} < 262, where T
and 52 . are defined in Assumptions A.1(i) and A.2, respectively. Then as (N, M,T) — oo

P(rin = m*| Model m* is the true model) — 1 for m* =1,...,7.

Theorem 3.1 indicates that we can choose the correct model w.p.a.1 as (N, M,T) — oo under some
additional side conditions on Ez,m’s. Despite the complication in the asymptotic analysis of general 3-D
models, the idea that outlines the proof of the above theorem is simple. When Model 1 is the true model
(which is unlikely in practice), all the other models are over-fitted; when Model 7 is the true model, all other
models are under-fitted. For m* € {2,3,4,5,6}, when Model m* is the true model, we need to classify other
models into either the under-fitted category or the over-fitted category. If we use CV;,« p, to denote C'V (m)

when Model m™* is the true model and Model m is used for the cross-validation, we can show that
CVinsm = CVie e 2 P > 0

for Model m that is under-fitted with respect to Model m*. The limits ¢,,,. ,,, are defined in Assumption A.4.
On the other hand, when Model m is over-fitted with respect to Model m*, unsurprisingly CVp,« m —CVips =
converges to 0 in probability, and we need to blow it up by a term that is divergent with (N, M, T') and depends
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on (m*,m) in order to obtain a positive probability limit. That is, for some K+ 1 = K m (N, M, T), we
have
B m [CVins . — CVi ] 2 Ppe > 0,

where Ky m — 00 as (N, M,T) — oo, and t),,,. ,,, are constants that are always positive when maxi <m<6{75 ,,, }
< 252 is satisfied. For example, when Model 2 is the true Model, it is easy to see that Models 1, 3, and 5

are under-fitted and Models 4, 6, and 7 are over-fitted. In this case, we have

CVaym — CVa2

T (CVau—CVas)

(N AM)(CVag — CVas)
(NAMAT)(CVa7r—CVas)

L g, >0form=1,3,5,
2 262 -72,>0,

B q6(262% — 52) + q7(252 — 525) > 0,

= q8(20% —T24) + 90(20% — Tos) + qu0(205 — Tog) > 0,

where N A M = min (N, M), g = imy an—oc(l A %), qr = lim(y ar)—oo(1 A %), g8 = Umn ar,7)— 00
(1A % A %), qo = lim(n a7, 7)—oo (1 A % A %) and g0 = lim(y, a7, 7)o (1 A % A %) As a result, we have
P(ri =2 | Model 2 is the true model) — 1 as (N, M, T) — oc.

The side condition on 72 and Eim in Theorem 3.1 essentially says that we cannot have too much serial or
cross-sectional correlation among the error terms. It is automatically satisfied if u;;;’s are uncorrelated across
all the 4, j,t dimensions. When {u;j;,¢t > 1} follows an AR(1) process, we can follow Lu and Su (2019a) and
demonstrate that this side condition requires that the AR(1) coefficient should lie in the interval (-1, 3).
If one doubts that strong serial correlations might be present, then we can consider the modified jackknife
method in the next section. Similarly, if the cross-sectional dependence along the i and j dimensions is weak,
such a side condition would be satisfied. When one suspects of strong cross-sectional dependence, one can
model it, say, by extending the analysis of 2-D panels with multifactor error structure in Pesaran (2006), Bai
(2009), and Lu and Su (2016) to that of 3-D panels. But this is certainly beyond the scope of the current
paper.

Note that we do not need any relative rate conditions on how N, M, and T pass to infinity. Our theory
works even if T' is proportional to log N or log M, and vice versa. Of course, the proof of the above theorem
can be greatly simplified if one would like to impose conditions such that T/ (NM)?> — 0, M/ (NT)* — 0
and N/ (MT)* — 0 as (N, M,T) — .

4 Methodology and Theory in the Presence of Strong Serially Cor-

related Errors

In this section we propose a modified jackknife method to choose different types of fixed effects when the

error terms exhibit strong serial correlation, and then justify its consistency.

4.1 The modified jackknife method

To allow strong serial correlation among the error terms, we assume that {u;;¢,t > 1} can be approximated

by an AR(p) process:

/
Uit = P1Uig,t—1 T Pollijt—2 + oo + Ppllijt—p + Vije = P U511 + Vije, (4.1)
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where i = 1,.,N, j = 1,.,. M, t = p+1,..,T, p = (py,...,p,)" is a vector of unknown parameters,
_ , . . .
Wiy = (Uij i1, Uijt—p)', and vyj¢ is a zero mean innovation term.

We propose to obtain a consistent estimate of p based on the OLS residuals from the largest model under
~(7)

7
consideration: u( ) = Yijt — Zij, -07. Given Uit

we run the following AR(p) regression to estimate p :

~(7 ~(7 ~ (7 ~ (7 *
Uz(Jt) _plugj)t 1+p2 Ej)t 2+ +pp ’Ej)f p+v1]t_pu£])t 1+vijt7

) ) . . . (T

wherei =1,..,N, j=1,... M, t =p+1,... T, d;; 41 = (Qijp—1, s Uijir—p) and vjj, = p'(;, 1 *Hl(‘j,)t—l) +

viji- Let the p = (py, ..., p,)" be the OLS estimator from the above regression. Let Yjoq = (Yijit—1s s Yijt—p)
(m) ~(m) ’

and (™ (y” t—15 - Uijip)'- Then we consider the following modified CV function:

ljt 1

T
2
CV* (m Z (it = P,y = @5 =T )]

NMT

an

where T}, =T — p. Define

m = argmin CV™* (m).
1<m<7

When Model m is the true model, we expect that (y;;: — f)/gij . 1) (yz(;?) fo'gg;"t)_ 1) will approximate the

true innovation term v;;; and P (m =m) — 1 as (N, M,T) — oo as long as the correlation among {v;;;} is
weak.
To proceed, define
®(L)=1—pL—p,L* — ... = p,LP,

where L is the lag operator. Let zz(]t) = ®(L) wt) for t = p+1,..,7, and m = 1,...,7. Let 7;.. =
1 T - T _ - 1 N M T

TP L0t ot Vit Tje = T it Loyt Vit Dige = 7 i pit Vigts D = NRIT, Soret 2oyt Dotmpipt Vit

Define v;.¢, 0.+, and v..; analogously to ;.+, U. ¢, @.... For notational simplicity, we will write Zf\;l Zj\il ZtT:p_H

and maxi<;<nN,1<;<Mpti<t<T aS Zi,j,t and max; ; ;, respectively, in this section.

4.2 Asymptotic theory under strong serial dependence
To state the next result, we add the following set of assumptions.

Assumption A.5 (i) All the roots of ®(z) lie outside the unit circle;

(ii) E(vm) =0, max; ;; E(v wt) < C, and NMT > it ”t LN 72 > 0;

(iii) NMT Z ,]tE(||xljt|‘ Uz]t) O(1);

(V) warzs i Sigtvige = Op(NMT)12) for Gige = 1, @ije, iju—j, wige—y for j=1,...,p.

Assumption A.6 There are positive finite numbers Egb ¢ =1,2,...,6, such that

) MLy Z 7. 252
ll) j 62' ﬂ) 0—12127

(i

(
(iii) =7 NM

(

(

(

=2 P 2 .
iJ UZJ O

P
Zt =p+1 UQt - 023
1v)

V) NT,, Z Zt—p+1 z2t - 0357

vi) MTp Z Zt p+1 UQJt - Jv6
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Assumption A.7 (i) If Model 2 is the true model, there exist positive constants 3, for m = 1,3,5
P P
such that ﬁ Zid’t(@ijt’m)Q = 5, and W Zm"t S3ijt,mVijt — 0, where ¢35 . = ®(1) (ai ""Yj) +
( )/\t ljt m(Z;an)_1Z;LD2£27
(i) If Model 3 is the true model, there exist positive constants ¢j ,, for m = 1,2,5,6 such that 5777 Zi’j,t(ggijam)z
P . P .
- <P§7m and m Zi,ggt S345t,mUWijt — 0, where §§ijt,m = (1 )’Yq wt i ZmZm)~ 1Z7/nD3£37
(iii) If Model 4 is the true model, there exist positive constants ¢}, for m = 1,2,3,5,6 such that
* 14 * * P * —
W Zi,j,t<<4ijt,m)2 = ¢4, and m Zi,j,t SaijemUije — 0, where Sdijt,m = @(1)%]“"‘I)< JA—Z z]t m(ZinZm) !
Zyn Damy;
(iv) If Model 5 is the true model, there exist positive constants @5, for m = 1,2,3,4 such that
P P
m Zi,j,t(‘?;ijt,m)Q = 5,m and W Zi,j,t S5ijt,mUijt — 0, where ¢5;, ) = Q(L)a;t 2]t m(ZZm) " Z), Dss;
(v) If Model 6 is the true model, there exist positive constants ©6m for m = 1,2,3,4,5 such that
* P * * p * *
WZJ t(gﬁijt,m)Q - Pem > 0 and mZi,j,t S6ijt,mUijt — 0, where S6ijt,m — O(L) (s + ajt) -
zgtm(Z/ Z ) 1Z':nD6£6;
(vi) If Model 7 is the true model, there exist positive constants @7, for m = 1,2,3,4,5,6 such that
* 14 * * p * *
W Zj t(<7ijt,m)2 — ¢7.m and W Zi,j,t S7ijt,mWigt — 0, where ¢z, , = q’(l)%‘j + @(L) (vt + ajt) -
Z! 7)Y Z! Dy

zgtm(

Assumptions A.5-A.6 and A.7 parallel Assumptions A.1-A.2 and A.4, respectively. Note that under
Assumptions A.1(iii)-(iv), A.3, and A.6, we also have the following relationships:

() & Z,70The = O(NMT)™2 + (T) ')
(i) 77 >, 7505 = O L(NMT)=V2 4 (NT) ™),
(iii) A Zt o1 Tty = O ((NMT)71/2+(NM)*1);
(iv) w7 T S Tij Tij. = Op(NMT) =12 4 771y,
(
(

V) NTp Z Zt p+1 TitVit = O ((NMT)_1/2 + M_1)§
vi) MT,, Z Zt—p+1 T.jt0.jt = Op((NZMT)fl/2 + N7,

The following theorem states the main result in this section.

Theorem 4.1 Suppose Assumption A.1-A.3 and A.5-A.7 hold. Suppose that max(G2,,...,52) < 262. Then

as (N, M,T) — o0
P(m =m™ | Model m* is the true model) — 1 form* =1,...,7.

Theorem 4.1 indicates that the modified jackknife method helps to choose the correct model under the
weaker side condition max(G2,,...,5%) < 262. When there is no serial correlation among {u;;;} such that
®(1) = (L) = 1 and w;j¢ = vz, then 2, = 52, and G2 = o2. That is, the result in Theorem 4.1 now
coincides with that in Theorem 3.1.

Note that we do not require {u;;¢,t > 1} to exactly follow the AR(p) process. Essentially we prewhiten
the error process via the AR(p) filtering with the expectation that the serial correlation among {w;j:, ¢t > 1}

will be sufficiently reduced after this procedure.
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5 Monte Carlo Simulations

In this section, we examine the finite sample performance of our jackknife and modified jackknife methods.
We compare them with the commonly used information criteria: AIC and BIC.* Specifically, let ;s =
Yijt — zgjt,mém = Yijt — (xgjtﬁm +d}j; mTm) be the in-sample residual for Model m, where m = 1,...,7. Then
AIC and BIC are defined respectively as

2k,
AIC (m) = 1 ((6"™)?) + T
(m log (NMT) k
BIC (m) = In ((U( ))2) + %,
where (6™)2 = T vazl Z?il ZtT:l(ﬁijt,m)Q and ki, is the dimension of (7, d;;; ,,,)’. In the simulations,

we find that BIC performs poorly, so we also modify BIC slightly as

N log(log (NMT))k,,
NMT

BICs (m) = In ((a—<m) )2)

We consider the three different types of DGPs: (i) static panels, (i7) dynamic panels without exogenous
regressors, and (4i4) dynamic panels with exogenous regressors. For static panels, we allow serial correlation
in the error terms. We consider the different combinations of (N, M, T) = (10, 10,5), (20, 20,5), (10,10, 10),
(10, 10,20) and (20,20,20) . The number of replications is 1000.

5.1 Static panels

We consider seven static panel DGPs that correspond to Models 1-7 in (1.1), where x;j; contains a constant
!

and a scalar random variable, say, &;;; and the corresponding true 8 is [1,1]". All fixed effects, namely,

*

Qiy Vs Aty Vij» Qit, and oy, are IID N (0, 1) random variables. To allow the correlation between Z;;; and fixed

effects, Z;5;’s are generated in DGPs 1-7 respectively as

DGP 3:  Zije = 1+, + it DGP 4: Ty =1+ + A+ 155, (5.1)
DGP 5: jijt =1+ Oé;ft + Mijts DGP 6 : SEZ‘jt =14+ a; + Oé;t + Mijts

DGP 7: Zyjp =1+ + i+ o + 145,
where 7,;,’s are IID N (0,1). To allow serial correlation in the error term, u;j; is generated as
Uijt = PUijt—1 T Vijt,
where v;j¢’s are IID N (0,1). We consider p = 0, i and %7 which correspond to no, weak and strong serial
correlations, respectively. As discussed above, if w;;; follows an AR(1) process, our jackknife method only
works for p € (—1, %) Hence, p = % corresponds to the cut-off point for our jackknife method to work, so

we also consider p = % in the simulation. The simulation results for p = 0, %, % and % are reported in Tables

3A-3D, respectively.

4To the best of our knowledge, there is no theoretical justification for AIC and BIC in the context of determining fixed effects

in 3-D panels. In fact, we are not aware of any systematic study of alternative approaches in our context.
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We first consider p = 0, i.e., there is no serial correlation. Even in this case, BIC breaks down apparently.
For example, when the true model is Model 6 or 7 (M6 or M7), BIC chooses M1 with probability 1. For
the other four methods, namely, the AIC, modified BIC, jackknife, and modified jackknife (labeled as AIC,
BIC,, CV, and CV* respectively in the table), we first consider the large T' case (T' > 5). All four methods
work well when T > 5. When the true model is M1, M2, M4, M5, M6, or M7, the four methods all select the
correct model with probability 1. When the true model is M3, the four methods all choose the correct model
with a probability larger than 0.9. Among the four methods, our jackknife (CV) method performs slightly
better than others. When T is small (T' = 5), CV* performs poorly. This suggests that a large sample is
required for CV* to work.

We next consider p = 1. We first examine the large T case when 7' > 5. Our modified jackknife (CV*)
performs best and jackknife (CV) performs slightly worse. But both outperform AIC and BIC,. For example,
when the true model is M6 and (N, M, T) = (10, 10,10), CV*, CV, AIC and BIC, select the correct model
with probabilities of 1, 0.93, 0.36 and 0.28, respectively. Again, in this case, BIC breaks down. When T is
small (T = 5), again we find that the performance of CV* is poor.

When p = %, only our modified jackknife (CV*) works for the large T case (T > 5). For example, when the
true model is M6 and (N, M,T) = (10,10,10), CV*, CV, AIC, BIC,, and BIC select the correct model with
probabilities of 1, 0.61, 0.07, 0.04 and 0, respectively. In general, the simulation results confirm our asymptotic
theories. For example, as we discuss after Theorem 3.1, when the true model is M2, T (CV24 — CV32) LN
252 — 52,, which equals 0 when p = % This suggests that our jackknife (CV) method cannot distinguish
Models 2 and 4 in this case. Correspondingly, in the simulations, we find that CV selects the M2 and M4
with probabilities of 0.56 and 0.44, respectively when the true model is M2 and (N, M,T) = (20,20, 20).
When T is small (T' = 5), no method works well.

When p = %, again only the modified jackknife (CV*) performs well when T' > 5. For example, when the
true model is M5, CV* selects the correct model with probability 1, while all other methods with probability
0. When T = 5, no method seems to work.

In sum, for these static panel DGPs, our jackknife performs the best in the absence of serial correlation.
Our modified jackknife performs the best in the presence of serial correlation when T is relatively large.

When T is small (T = 5) and serial correlation is strong, no method works well.

5.2 Dynamic panels without exogenous regressors

We consider seven AR(1) dynamic panel DGPs. In this case, we cannot allow for serial correlation in the
error terms as it will result in the endogeneity issue so that the FE estimates are biased and the IV/GMM
estimates are generally needed. Specifically, we consider seven DGPs as Models 1-7 in (1.1) where z;j;
contains a constant and the lagged dependent variable y;;+—1 and the corresponding true 3 is (1,0.75)". All
the fixed effects (v, Vs Aty Vij» Qit, and Oz;’ft) and u;;¢’s are IID N (0,1) random variables.

The simulation results are reported in Table 4. It shows that our jackknife method performs the best,
followed by AIC and BICs. BIC performs the worst. For example, when the true model is M6 and (N, M,T) =
(10,10, 10), CV, AIC, BIC, and BIC; select the correct model with probabilities of 0.98, 0.46, 0.42 and 0.37,
respectively. When T is large (T' > 5), our jackknife method can select the true model with probabilities
larger than 0.90.
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5.3 Dynamic panels with exogenous regressors

We consider seven dynamic panel DGPs with multiple exogenous regressors. The DGPs are the same as
described in Models 1-7 in (1.1) where x5t is a 7 x 1 vector. The first element of x;;; is constant. The second
is the lagged dependent variable y;;;—1. The third is a random variable as in (5.1) and the rest four elements
are IID N (0,1) random variables. The corresponding true 3 is (1,0.75,0.2,...,0.2)". All fixed effects and ;¢
are IID N (0,1) random variables.

Table 5 presents the simulation results. Again, in general, our jackknife dominates other methods. It can
select the true model with probabilities larger than 0.90 when T is large (T' > 5). The performance of AIC
is similar to that of the jackknife except when the true model is M6, in which case the jackknife outperforms
AIC significantly. BIC; is worse than the jackknife and AIC, but still better than BIC.

6 Empirical Applications

In this section, we provide two empirical applications of our new methods.

6.1 Technology and contractions

We apply our new method to study how technological characteristics interact with business cycles as in
Samaniego and Sun (2015, SS hereafter). Specifically, SS are interested in examining which technological
characteristics lead industries to experience the most difficulty during the recession period. Their main

estimation equation corresponds to our Model 7 (using our notation):
Growth;ji = By + By (Contractiony x X;) + ByControlsij; + v;; + it + &y + Wije,

where Growth;; is a measure of growth in industry j in country 7 at year ¢, Contraction;; is a binary variable,
which equals 1 if country ¢ is in a contraction in year ¢, X; is an industry technological characteristic, and
Controls;j; is a control variable.

SS consider three measures of the growth variable, Growth;j;: (i) value added (the log changes in industry
value added), (i) output (the log changes in gross output) and (7#i:) output index (the log changes in
the Laspeyres production index). There are ten measures of the industry characteristic, X;, (i) external
finance dependence (EFD), (i) depreciation (DEP), (ii7) investment-specific technical change (ISTC), (iv)
R&D intensity (RND), (v) human capital intensity (HC), (vi) labor intensity (LAB), (viz) fixity (FIX),
(viit) investment lumpiness (LMP), (iz) relationship-specific investment (SPEC), and (v) intermediate inputs
intensity (INT). The control variable is the share of the industry value added out of the manufacturing
industry at year ¢ — 1. For the detailed explanations of these variables, see SS (Section 3). The dataset covers
139 countries and 28 manufacturing industries from 1970 to 2007. Hence, (N, M,T) = (139, 28, 38). There
are a large number of missing values. The exact total sample size depends on the dependent variable. For
example, there are 57,115 observations for the value added growth. SS adopt the largest model (Model 7).
Using a too large model can result in substantial estimation efficiency loss. Here it is an interesting question

to decide which model is the most appropriate among the seven models considered above.
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As in SS’s Table 5, we first run the growth regression using one measure of growth (Growth;;;) as
the dependent variable and the interaction term between one measure of industry characteristic (X;) and
contraction as the key regressor. Therefore, the dimension of the regressors is k = 3 (including the constant
and control variable). We consider a total of 30 different combinations of Growth,j; and Xj. It is interesting
to find that for all the 30 regressions, the jackknife, modified jackknife, AIC, and BIC, all select Model 6,
while BIC selects Model 2. Table 6A also contains the estimates of 3, and its 95% confidence intervals (CI)
for all seven models. Based on the selected Model 6, the estimate of 8, is -0.013 with a 95% CT of [-0.0242,
-0.0018]. To save space, we only report the numerical results for Growth;j; being value added and X; being
EFD in Table 6A. The results for the other 29 regressions are available upon request.

We also run three regressions by including all the ten industry characteristics for the three dependent
variables. Hence, the number of the regressors is k = 12 (including the constant and control variable). Again,
for all three regressions, the jackknife, modified jackknife, AIC and BIC; all select Model 6, while BIC selects
Model 2. The numerical results for Growth;;; being value added are reported in Table 6B. Based on the
selected Model 6, the estimate of 5, is -0.0163 with a 95% CI of [-0.0439, 0.0113]. The results for other two
regressions are available upon request.

Considering the poor performance of BIC in the simulations, we conclude that Model 6 is an appropriate
model for this application. Recall that Model 6 only includes a;; and o, as fixed effects. This suggests that

after including the country-time and industry-time effects, it is redundant to include country-industry effects.

6.2 Gravity equations in international trade

Gravity equations are widely used to model bilateral trade. It is basically assumed that the bilateral trade
volumes depend on the economic sizes (often using GDP measurements) and distance between two economies,
which mirrors the physical gravity equation. For a review on gravity models, see Head and Mayer’s (2014)
chapter in the Handbook of International Economics. Different fixed effect models have been applied to
estimate gravity equations, as we have discussed in Section 2 above.

We apply our new method to determine the fixed effect specifications in bilateral trade data. We first

consider one basic gravity equation:
In (Export;j:) = By + f11In (GDPy + GDPj;) + fixed effects + wj¢,

where Export;;; is the export of country ¢ to country j in year ¢, and GDP; and GDPj; are the GDPs
of countries ¢ and j, respectively at year t, fixed effects are specified as in our Models 1-7 in (1.1). Here
GDP;; + GDPj; represents the total economic size of country ¢ and country j. Baltagi et al. (2003) also
consider the same form of regressors. Note that we do not include the distance between country ¢ and country
7 as a regressor, as the distance is time-invariant and its effect is not identified under our Models 3, 4 and 7.
The sample includes 35 OECD countries over 58 years (1949-2006). Thus, here N = 35, M = 34, and T' = 58.
With missing values, the total sample size is 48,403. The data are obtained from the companion website of
Head and Mayer (2014). For this regression, we find that the jackknife, modified jackknife, AIC, and BICy
all select Model 7 as the correct model, while BIC selects Model 4. The numerical results are shown in Table
TA. We also report the estimate and 95% CI for 8, for all seven models. Based on the selected model, the
estimate of 3, is 0.657 and its 95% CI is [0.577, 0.738].
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We also modify the equation above by adding the population variables, i.e., we consider
In (E.’EpOTtijt) = BO + Bl In (GDPN + GDP]t) + ,82 In (POPZt + POPJt> + fixed effects + Usjt,

where POP;; and POPj; are populations of countries ¢ and j in year t. Again, the jackknife, modified
jackknife, AIC, and BIC; all select Model 7, while BIC selects Model 4, as shown in Table 7B. Based on the
selected Model 7, the effects of GDP and population are both positive and statistically significant.

We conclude that for gravity models, all fixed effects v;;, a;t, and o, are important, which suggests that

there is substantial unobservable heterogeneity in the bilateral traded data.

7 Conclusion

In this paper, we propose a jackknife method to choose between a subset of 3-D panel data models with
fixed effects that are widely used in the literature. We show that the method can consistently select the true
model when the serial or cross-sectional correlations in the error terms are not strong. In the case where the
error terms exhibit the strong serial correlation, we propose a modified jackknife method. Simulations are
conducted to evaluate the finite sample performance of our methods. We apply our methods to two datasets
to study the interaction between technological characteristics and business cycles and the gravity equations
in international trades.

There are several interesting issues for future research. First, we can consider a broader class of 3-D
panel models and conjecture that our theory continues to hold under some regularity conditions. Second,
even though we only focus on balanced panels for notational simplicity, we remark that our theories for the
unbalanced panels are still valid with obvious modifications. In particular, we now need that N, min;<;<n Mj,
and mini<;<n,1<j<m, Ti; pass to infinity jointly. Third, we only propose a modified jackknife method to
handle strong serial correlations and it is not clear how to take into account strong cross-sectional correlations.
If one believes that the strong cross-sectional correlation may be present in the error terms, we may consider
the use of a multi-factor error model from the scratch. The problem is that there exist many ways to model
cross-sectional dependence in 3-D models. Recently, Lu and Su (2019b) have studied a 3-D factor model that
contains one type of global factors and two types of local factors. As one can imagine, it is highly challenging
to determine the number of global and local factors in such a factor model, not to mention the estimation
and inference on the factors and factor loadings. When we include regressors in the above 3-D factor model,
the issue becomes even harder and we are not sure whether one can apply the jackknife idea to determine

what kinds of fixed effects should be included in the model. We leave these topics for future research.
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Appendix

A Proof of Theorem 3.1

In this appendix, we first state some technical lemmas that are used in the proof of Theorem 3.1. The proof
of Theorem 4.1 is relegated to Appendix B in the online supplement The proofs of all technical lemmas are

given in Appendix C of the online supplement. Let >, ., = Zi:l ijl thl and similarly for 7, ., >7, .
Zj,ta >0 Z]‘ and 3, .

Lemma A.1 Let Z = (X, D) and Mp = Inyr — D(D'D)~D'. If both D'D and X'MpX are nonsingular,

then,
(Z’Z)ﬂ _ X5 -X3»X'D(D'D)™?
—(D'D)"'D'XX} (D'D)"'+ (D'D)"'D'XX35X'D(D'D)? ’
where X3 = (X'MpX)~1
Lemma A.2 Let Dy, Dy, Dy, Dyj, Dyr, D} ;, Dip, and D% be as defined in Section 2. Then

(z) Dy L Dy L Dy, Dyy L Dy, Dip L Dyr, Dip L Di; L D

(ZZ) PD2 ZP]+PJ+PT, ,PD4 :P]J+PT, PDG _PIT+PJT7 PD7 _PIT+PIJ+PJT7

(iii)P,:(INfJWN)@o%%J—g,PJ:;’WN@@(I Jf)@@ L Pr=8 e (Iyr—I2);

(iv) Pry=(Inn — B5%) @ 45, Prp = 3 @ (Iyr — 4);

(v) Pip =1 *JWN)@)%@IT? Ply=In® (In — 3F) @ F, Pip = F @ In @ (Ir — F).
Lemma A.3 Let A= (ai;jt) and B = (b;j;) be either X or U. Let @, @;..,a.j., Q..t,
in the same way as T, T;.., T.;. ,T 4 Tije , T.jt, and Ty, and similarly ford, b;.. 5

(i) NMTA/PIB— NZ a;.. ab

I

(1) a7 A'PyB = 5 Zj 3bg. = ab
(iii) 5= A'PrB = L3, a.4b., —ab,
(iv) i A'PrsB = 5 3, @i by —ab
()5 APy B = 34 2, @b, —ab
(Vi) 3 APy B = w57 0, @i by, — % 32,30
(i) s A Pip B = 55 Y0 Titbiy — & 30, Ttb s,
(viii) i A P B = 5 S @by — 5 30,050
Lemma A.4 Suppose that Assumptions A.1(iv), A.2, and A.3 hold. Then
(i) 5z X' Mp,U = Op(NM) ™" + (MT)™" + (NT)™" + (NMT)"'/?),
(i) 5 X' Mp,U = O, (T + (NMT)’W)
(iii) 5 X' Mp,U = Oy (T + (NM) ™" + (NMT)™/?),
(iv) xis X' Mp,U = Op(N~! + (NMT)~'/?),
(v) 5 X' Mp,U = Op(N~' + M~! 4 (NMT)~'/?),
(vi) 5oz X' Mp.U = Op(N~' + M~ + T~1  (NMT)~'/?).
Lemma A.5 Let dijim be a typical element of D, form =2,...,7. Then
(i) dijy 2(D3D2)dije2 = 7 + 37 + N — NAIT
(i) dijy 5(D3D3) " dijes = T — xarrs
(i) d;jt,4(D£1D4)71dijt74 = % + ﬁ - NJ%4T’
(iv) djj, 5(D5Ds)dije5 =
(v) diji6(DsDo) " dijes = % + 27 — war — NarT
(vi) djj, (D5 D7) dijr7 = ;

ijo> Qejt and a;.; be defined

a;
, bty bij.y bojt, and by Then




Lemma A.6 Let hiji ., = ”t (20 Z)  2ijt o and Cijem = 1_h1jt,7n form=1,..,7. Let hi;, ., = (@it —
X'Dy (D}, Din) " dijem) X [@ije — X' D (D}, D)"Y dije,m] for m = 2,..,7 where X3, = (X'Mp mg()_l
Letd,, = = djjy (D7, D )*ldljtvm form =2,..,7, which does not vary over (i,j,t) by Lemma A.5. Let dy =0
and b, = x5 (X' x)"* x;j¢. Suppose Assumption A.1(i1) and (v) holds. Then for m =1,...,7 we have

(i) hijtm = dm + hj; 03

(i) max; j ¢ hijem = Op(NMT) ™12 4+ d,,) = 0,(1);

(11t) max; j ¢ |Cije1 — 1| = 0p(1);

3hije,m—2h3, 3hijt,m—2h3,;
. 2 _ ijt,m ijt,m . o ijt,m ijt,m | __ .
(Z'U) Cijt,m —1- 2hljt m = W . h’?,]t m and maX%],t ’—(1_}“]{‘”52 ‘ = Op(l),
2 . 2 _ | 3=2hijt.m 2 o 3—2hijt.m _
(v) SGitm — 1 = 2hijem — 3hijym = [7(1 o 3| hijtm and max; j Ty — 3| = op(1).

Lemma A.7 Suppose that the true model is y;j; = acmﬂ + d” T+ Uy, with dummy matric D* = Dop,x =

{d; ; +} and coefficient vector m* = m,«. For the leave-one-out prediction §iji,m using model m € {1,2,...,7},

we have®
€ijt,m

; " e - . . L )
(1) Yijt — Yijt,m = T —— where hijy m is defined in Lemma A.6 and eije m = Yijt zijt’QO,

(”) €ijt,m = Azgt m T sztm + Ci]t m» where Azgtm = U5t — dlijt,m(D'lmDm)_lD;nUa BijtJTL = d;‘;’tﬂ'* -
Xp, X'Mp, D5 —d., . (Dl Dy) 2Dl D"+l (Dl Do) Dl X X5 X' Mp, D*7*, and Cijpm =

Ut ijt,m ijt,m
d}jy (Dl Dy ) 1D' X X5 X'Mp, U~ ”tXD X'Mp,.U,

(ZZZ) Zz ot z]t m U/MDmU Zz ot z]t m = 7-‘->‘<I‘D>’Kl~]\4Dm (I_PMD )]\JDm‘D>k - Zz ot z]t m UIMDm
XXXDmX MD U Zz,g,t Az]t,m ijt,m — =U MDm ([*PMDMX)MDMD* *7 Zl"%t Azgt,mczjt,m = 7U/MDmXXf)m
XXIMDmU, and Zi,j,t Bijt,mCijt,m =0.

Lemma A.8 Let E, = 5377 2 it Gitom(Chitm
tions A.1-A.3 hold. Then

(i) By = Op((NMT) 1),

(it) By = Op(NM) ™2+ (NT) > + (MT) > + (NMT)™1),

(iii) B3 = Op(T2 + (NMT)™1),

(iv) By = Op(NM) > + T2+ (NMT)~ 1),

(v) Bs = Op(N~2 + (NMT)™1),

(vi) Bg = Op(N"2+ M2 + (NMT)™ 1),

(vii) Bz = Op(N"24+ M2+ T2+ (NMT)™1).

+2Ai5t,mCijt,m) for m =1,2,...,7. Suppose that Assump-

Lemma A.9 Let F,, = W > it czzjt,m(ijt m 2455t mBijt,m +2Bijt,mCijt.m) form =1,2,...,7. Suppose
Assumption A.1(v) holds. If Model m is just- or over-fitted, then F,, = 0.

Lemma A.10 Suppose that Assumptions A.1 and A.2 hold. Let H,, = it Dot GitomAdjtm for m =
2,...,7. Then

(i) Hi = m Zz’,j,tuzzjt +Op((NMT)71)a
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+(MT)? + (NMT)™Y),
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5For Model 1, noting that D = @, we implicitly define d;j+1 = 0, Mp, = InmT, and Xf)m = (X’X)fl. In this case,
Aiji1 = wije, Bijin = dif, 7 — s, (X' X)"E X' D*x*, and Cyjiq = —al, (x'x)"tx'u.
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Lemma A.11 Let Gy = 57 2o .4 Cjem (Aijtm Bijeom + Bijt,mCijtom) and K= = 5377 2054 Citm
Xszt m for my, m* = 1,2, ..,7, where model m* is the true model and model m is a fitted model. Suppose

that Assumptions A.1 and A.4 hold. If model m is under-fitted with respect to the true model m*, then

(i) Gm = Op( )

(1) K m = Pm*,m
Lemma A.12 Let A = (a;5¢) and B = (bij¢) be either X or U. Suppose that Assumptions A.1-A.3 hold.
Then

(i) i A (Mp, — Mp,) B = 5 32, (@i — @) (bij. = 5) + Op(NT) ™" + (MT)™1) = 0, (T),

(ii) 5 A' (Mp, — Mp,) B= %Y, @+ —a) (b.. —b.)" = O,(NM)™1),

(iii) sipr A’ (Mp, — Mp,) B = 53, (@it — @) (Bie =) + 505 32, @je — @) (B¢ —B) + Op(NM)
+(MT)™ + (NT)™) = Op(M~1 + N71),

(iv) oA (Mp, — Mp,) B = 55 3 (@it — @) (Bt = b)' + 555 32,4 (@t — @) (b.ge —B) +Op(NM)™?
+(MT)P+ (NT) 1) =0,(M~1 + N71),

(v) sarr A (Mp, — Mpy) B = 57 3, (@it = @)(bis = b)' + Op(NM) ™) = Op(M ™),

(vi) 53 A (Mp; — Mp,) B = 57 >, (@it — @)(bit — ) + 7 20 (@i — @) (bij. — b) + Op(NM) ™!
+(MT)™ +(NT)™ ) =0 (M~ +T71),

(vii) wirr A (M, — Mpy) B = s 3, (@ — )iy = B) + Op(MT) ™1+ (NT) 1) = 0,(T ),
Lemma A.13 Suppose that Assumptions A.1-A.3 hold. Then

(i) If Model 2 is the true model, i Dt Mijea €3it.4 — €3eal = 0p(T™1),

(i) If Model 3 is the true model, 57T Dt Mijea |e?jt74 - e?jt,3| =o,((NM)™1),

(ii) If Model 3 is the true model, s it liien €317 — €Ziea| = 0p(NTH+ M1,

() If Model 4 is the true model, rr Dot Mijer €217 — €l = 0p(NTH+ MY,

(v) If Model 5 is the true model, w7 it liiee |e?jt’6 - e?jmsi =o0,(M™1),

(vi) If Model 5 is the true model, rr Dot Mijer €217 — €Xs| = 0p(M™1 +T71),

(vii) If Model 6 is the true model, w37 i Mg 217 — €2iv6| = 0p(T7H).

];;;mma A.14 Suppose that Assumptions A.1-A.3 hold. Let D;jt m = Dy, (D, D,,)~" dijt.m form=1,2,...,7.
en

(i) If Model 2 is the true model, Ly 4 = 5777 Dt \Wijea — Bijeo| €30 = 0p(T7),

(i) If Model 3 is the true model, Ly 4 = 77 Dot \h3jea — Bijs| €208 = op((NM) 1),

(ii1) If Model 3 is the true model, L3 7 = NZ\I/IT Dot \hfjm - hfjm\ €z =0p(N"1 4 M),

(i) If Model 4 is the true model, Ly 7 = NMT Dt | e Rijeal €200 = 0p(N71+ M71),

(v) If Model 5 is the true model, Ls ¢ = NMT it | tiee — Nijes| €3ies = op(M™1),
(vi) If Model 5 is the true model, Ls 7 = 577 Dt |hijer = Bijrs| €205 = op(M 1+ T71),
(vii) If Model 6 is the true model, Ls 7 = w377 Y4 |hijer — hijeel €iee = op(T1).

Proof of Theorem 3.1. We use CV« , to denote CV (m) when Model m* is the true model. By
Lemma A.7, CVm*7m = m Zi,]}t C?jt,me?jt,m = m Z@j,t C?jt,m(A”t m +Bzgt m+022]t m+2Aijt,mBijt,m+
245t mClijt,m + QBijt’mCijt,m), where eij¢.m = Aijt,m + Bijt,m + Ciji,m. When Model m is just- or over-fitted
with respect to the true Model m*, we have, by Lemmas A.8-A.10,

CVir . = B + Fpy + Hyy 2 52

We will show that in this case K m (CVipr m — CVipr ) — constant> 0 as long as m # m*, where
Em*m = Em+m (N, M,T) — oo as (N, M,T) — oo and it depends on the underlying true model (Model m*)
and the fitted model (Model m).

On the other hand, when Model m is under-fitted with respect to Model m*, by Lemmas A.8 and A.10-

A.11 we have
C‘/m*,m = Lm + Gm + Hm + Km*,ma
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where E,,, + Gy, = 0,(1) and H,, 2, 63 for any m, and Ky« = > 0. It follows that

CVor = CViprome = lim - Ko > 0.
(N,M,T)— 00

The details are given below.
N 8CAaT8 1: Model 1 is the true model. In this case, Models 2-7 are all over-fitted and we have by Lemmas

CVii = Hi+O,(VMT)" Y,
CVip = Hy+Oy(NM)™> + (NT) 2 4 (MT)® + (NMT) ™),
CVig = Hz+O,(T2 (NMT) b,
CVia = Hi+O,(NM)>+T724(NMT)™Y),
CVis = Hs+O,(N? +(NMT) b,
CVig = Hg+Op(N 2+ M 24+ (NMT)™),
CViz = Hr+Op(N 2+ M 2+T 2+ (NMT)™").
Subcase la. For CV; 2 — CV 1, we have

111 1
_ _ Ive s iy e o lyg
C¥2 =Wy (NT tar NM> NATT 2 i~ | 7 2T Zu] T ;u

1,5,t { J

+O0,(NM)™> 4+ (NT) ™ + (MT) > + (NMT)™ "),

and
(NM/\NT/\MT)(CVM—CVM)—>q1(20 —52,) + 2(252 —T2,) + q3(25% — 723),

where ¢ = lim(y a7,7)— o0 (1A T A M>v g2 = im(y a1y —oo (1A % A W)’ and g3 = lim(y a7, 7)—o0 (1A % A %)
Subcase 1b. For C'V; 3 — CV; 1, we have

T
T(CVig—CVig) = NMTZ 2= NMZﬂfj,+op(1) 2952 — 52,
,J

1,J,t

Subcase 1c. For CVi 4 — C'Vy 1, we have

_ 1 1 —2
(NMAT)CVig—CVi,) = (NM/\T)( + %37 NMTZu”t NM/\T)NMZu”

1,5t 4,J

~(NM AT)= Zu +o,(1

= q4(26u - Eu4) + q5(26u - 51213)7

where g4 = lim(y 37,7y 00 (1 A ﬁ) and g5 = lim(y, 37,7y o0 (1 A %)
Subcase 1d. For C'V; 5 — CV; 1, we have

N
N(CVis5—CViy) NMT Z U~ g > w, B2 — T
gt
Subcase le. For C'V; g — CV; 1, we have
M N 2 9

(N/\M)(CVLG—CVLl) = ((1/\W)+(1/\_))—4 ul-jt—(l/\

= 46(20;, — Toe) + a7(20, — Tos),
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where g6 = lim(y,17)—oo (1 A %), and g7 = im(y, p)—oo (1 A %)
Subcase 1f. For C'V; 7 — CVi 1, we have

N M T —2
(NAMAT)(CVi7—CVip) = (1/\?/\? NMTZ]:t ijt MZUU
N T
IN—AN—
+( M M) NMT; ijt NT Zult)
M T

P

= (20 —G’ )+q9(20 —G’ )+q10 20 —Ui

6)
where ¢s = im(n 7)o (LA AL, go = imyarr)—oo(LA T A L) and qio = Uy ) —oo (1A 22 A L.

Case 2: Model 2 is the true model. In this case, Models 4, 6 and 7 are over-fitted and Models 1, 3 and
5 are under-fitted. By Lemmas A.8-A.11, we have

CVaop = Hy+ Kopm+0p(1) for m=1,3,5,

CVay = Hy+O,(NM) >+ (NT) >+ (MT) >+ (NMT)™1),
CVay = Hy+O,((N )2+T*2+(NMT)*1),

CVas = Hg+O,(N"24+ M~ —I—(NMT) b,

CVaoy = Hy+O0,(N24+ M 24T724(NMT)™).

For the under-fitted models, we have C'V5 ;,, — CVa o 2 2., > 0 where m = 1,3,5. For the over-fitted cases,

we have to be careful in the discussion.
Subcase 2a. For C'V, 4 — C'Va 9, if we assume that IV, M, and T pass to infinity at the restrictive rates

such that T/ (NM )2 — 0,°% then analogously to Case 1, we can easily show that these conditions will ensure
T (CVay — CVas) = T (Hy — Hy) + 0, (1) % 252 — 72,. But as emphasized in the text, we do not want to
impose such a rate condition. In this case, we need to keep track of all terms in the expression of C'V; 4 and
CVa, that are not o, (7). To unify notation, we make the following decomposition

_ 2 9
CVou —CVoo = NMTE zgt4ezjt4 Cijt.2€ijt.2)

2,7,t

= NMT Z zgt 4= ?jt,2) + (szjt,4 - 1)(‘%2;'7574 - E?jt,z) + (C?jt,zi - C?jt,z)‘i?jm]

2,7,t

LY 4 L8 4 L8Y | say.

Note that

1 . .
L2 NMTU/ (Mp, — Mp,) U + 575 (U'Mp, X Xjp, X' Mp, U = U'Mp, X X, X' Mp,U)

= L(2 4 + L§224), say,

6 Admittedly, this rate requirement does not appear very restrictive and looks quite reasonable in many applications.
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where we recall Xj, = (X'Mp, X)". L3 = — 5 30, @ + Op(MT) ™' + (NT)™1) = O, (T™') by

Lemmas A.12(i). For Lfé4)7 we make further decomposition

2
2,4 * *
AR NMT U' (Mp, = Mp,) XX}, X' (Mp, = Mp,) U + 5===U" (Mp, — Mp,) XX}, X'Mp,U
1
U M. X X5, X' (Mp, — Mp,) XX, X'Mp,U

2,
Lg,Q,% + 2L§ 2 % + L§224:%7 say.

By Lemmas A.4(i) and (iii) and A.12(i), and Assumption A.1(v), L%‘li = Op(T ), L§224% =0, (T71) O,(T1
+(NM)~'+ (NMT)~1/2), and Lf{}% = ()p((JVMr2 +(MT) "2+ (NT) >+ (NMT)" 10, (T~1) . 1t follows

that Li%Y = 0,(T71) and LY = — 5 0,73 + 0,(T71) = 0, (T71)..
For L(2 4 , we use the fact that hij¢ p = dm + h;t 1 by Lemma A6(i). Let ¢, = 1_13 . Then
1
2 =2 =2 7%
C. - —_ C = — - C h' y Ti ] mo

1jt,m m (1 . d h:jt m) (1 . dm)2 m'Yijt,m'ijt,
where 15t m = (2—dm—hj; )/ (1—=dm—h3j, ,,)?. Noting that A, . is Op(dy,) as shown in the proof of Lemma
A.6(ii). One can readlly show that maxld’t,m |75j¢t,m| = 2 + 0p (1) . We make the following decomposition

=2
24) ¢c3—1 2,4 2,4
Lg )= m (efjt,z; - ez‘th,Q) NMT Z Cijt,a — ?l)(elgjt,ﬁl ’L2]t o) = Lg 1 ) + Lé,z )a say.

,5,¢ 4,5t

Lg?fl) =(c3 - 1)L52’4) =o0(1) L§2’4) = 0,(T~1). For Lg?;l), we apply Lemma A.13(i) to obtain

}L(Q 4)} = NMT Z hijiarijale ?gt 4= z2jt,2) < % ma;i;ﬂ}njt’d Z hije, 4|emt 4= Op(T_1>-
1,95t 1,3,
For L§2’4), we have
L:(*,QA) = ﬁ Z(C?jt,z; - szjt,2)ei2jt,2
=

= NMT Z 2 (hijt,a — hjt, 2) €jt2 v S NMT Z Cijt.a C?jt,? — 2hijea + 2hijt,2)egjt,2
-

For L:(,ffl), we apply Lemmas A.5, A.6 and A.14(i) to obtain

L:()ffl) = 2 — (MT)" + (NT)™ NMT Z o T < NMT Z fita = Do)l

,5,t ,5,¢

= 27— (MT)"' + (NT)™! NMT > eliato, (T7)

1,55t

= TNMTZUZJI‘,+OP )?
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as we can readily show that == >, = 7 > it Ui +0p(1) when Model m is the true model.

i,5,t zgt m
For Lé,é ), we can apply Lemmas A.5-A.6 and A.14(i) to show that

(2,4
‘L | = NMT D (Ejea— Cino — 2hijea + 2hiji2)es s = NMT Z |hije,a = hijio| €}t
1,5t 2,7,t
= p NMT zgt 2 NMT zgt 4 1jt,2 ijt,2
4,35t 1,55t

= Op (1) [O;D<T_ )+0p<T_1)] = Op(T_l)'

It follows that L:(32’4) =271 + +0,(T1). In sum, we have proved that

NMT 1,7, lj

1 1
CVoy = CVap = 2T—1m Zu?jt ~NM Z@QJ +o,(T7)

1,5t ,J

and then T (CVaq — CVas) 2 252 — 72, by Assumptions A.1(i) and A.2(iv).
Subcase 2b. For C'V, ¢ — CV3 9, noting that

CVaog—CVop = Hg—H2—|—op(N*1_|_M*1)
. 1 1 1 g 1 _2 . .
= (N+M) NMTZJ:t it MT;UN_W;U”—FOP(N +M )7

as in Subcase le, we have
(NAM)(CVag — CVan) L q6(262 — T26) + q7(25% — 725).

Subcase 2c. For C'V, 7 — CV3 o, noting that

CVor —CVap = H7_H2+0p(N71+M71+T71>
(11 1 . 1 B
- <N+M T) NMT; e NM;“Z‘J“ NTZZ;u” MTZ gt

+op (Nt M~ + 171,
as in Subcase 1f we have

(NAMAT)(CVay — CVag) 5 qs(25% — Toy) + 40(267 — Tas) + 10(255 — Tug)-

Case 3: Model 3 is the true model. In this case, Models 1, 2, 5, and 6 are under-fitted and Models 4 and
7 are over-fitted. By Lemmas A.8-A.11, we have

CVsm = Hp+ Kz +o0p(1) form=1,2,5,6,
CVaz = Hz+O0,(T 2+ (NMT)™),

CVsy = Hy+O,(NM)>+T 24 (NMT)™),
CViz = Hi+Op(N>+M >+T7>+(NMT)™).

For the under-fitted cases, by Lemma A.8 and A.10-A.11 we have
CV3m —CVz3 2 03 >0 form=1,2,5,6.

We study the over-fitted cases in order.
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Subcase 3a. For C'V3 4 — C'V3 3, the proof parallels to the analysis of C'Va 4 — C'V5 2 and we only sketch the
main steps. Note that CVau — CVas = wapp 20, 54(€e 4€iii s — Chie3€iies) = Lt Y + LS 4 L$Y ) where
L2374) is defined analogously to L§2’4) for £ =1,2,3. For L§3’4), we have by Lemmas A.4(ii)-(iii) and A.12(ii)

: 1 1 . .
LB = mU’ (Mp, —Mpg)U—s—W(U’MD3XXD3X’MDSU—U’MD4XXD4X'MD4U)
1 o _ 1 —_ _ _
= -7 (@ =) + 0p(NM) )=—7§ W+ 0p(NM) 1) = O, (NM)™H).
t t

(2,4)

For L(3’4) we follow the analysis of Ly~ and consider the following decomposition

3,4 -1 _
L( ) = m (egjt,él - ei2jt,3) + NMT Z(C?jm - Ci)(egjt,zx -

,5,¢ i,7,t

Lg‘f’f) = (¢35 - 1)L§3’4) =o0(1) L(13’4) = 0,((NM)~1). For Lg?;l), we apply Lemma A.13

3,4 3.4
ei2jt,3) = Lé,1 )+ Lé,2 ), say.

—2
3,4 i max; ¢ |Tijeal -
’ng | = T E h’zgt aTijt,ale ?;t a4~ 22375,3) < —]\;](4T < E hzjt 4|eijt,4 - 3?jt,3| = Op((NM) 1)-

1,5,t 1,55t

Next, we apply Lemmas A.5, A.6 and A.14(ii) to obtain

s 1+o Z
Y = NJ\/?T m2 e = o) s
1+o } (h :
= 2[(NM)™'— (NMT)~ N]\gT s+ NAIT NMT Hita — Mijes)edis
1,55t 1,5,t
2
- NMm NMT Z“m +op (NM)7).

1,5,
In sum, we have proved CVzq — CVaz = 2(NM) ™ s 20 5, s — 7 S T2, + 0p(NM)~1). Then
NM(CVs 4 — CVs3) % 252 — 52, by Assumptions A.1(i) and A.2(ii).
Subcase 3b. For CV3 7 — C'V3 3, the proof parallels the analysis of C'V5 4 — CVa 2 and we only sketch the
main steps. Note that CVa 7 — CVaz = xpr > 5 1(CHie7€iier — CiesCijes) = LB 4 L8 4+ L3 where
L&‘”) is defined analogously to L§2’4) for ¢ =1,2,3. For Lg‘”), we have by Lemmas A.4(ii),(vi) and A.12(iii),

1
3,7 * *
LD = WU/ (Mp, — Mp,) U + (U M, X Xj, X' Mp,U — U'Mp, X Xp, X' Mp, U)

- TZUM TZu]tJrop (M 4+ N YHY=0,(M'+N1).

Following the analysis of Lé ) we can show that Lé?”?) =op(M~1+N~1). For Lé?”?), we can apply Lemmas
A5, A.6 and A.14(iii) to obtain

3,7 1+O
L{(S ) = N]\;T 22 ijt,7 Ut 3) ’th3
7,7,t

_ _ _ _ _ 1,140, (1)

_ 1 1 1 1 1 1 p o2

= 2INT"+M (NM) (NT) (MT)™* + (NMT) ]—NMT 2 €ijt,3
2 * *

+—NMT ( ijt,7_hijt,3)€?jt,3

1,55t

_ _ 1 _ _
2(N 1+M l)mzufjt+0p(M 1+N 1).

1,45t
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In sum, we have proved

1
= -1 =2 -1 -1
CVsg—CVag=2(N""+M! NMT; it NT;UM MTZth+opM +N7H
and then (N A M)(CVaz — CVs3) 2 ¢6(252 — 525) + ¢7(252 — G25) by Assumptions A.1(i) and A.2(v)-(vi).

Case 4: Model 4 is the true model. In this case, Models 1, 2, 3, 5 and 6 are under-fitted and Model 7 is
over-fitted. By Lemmas A.8-A.11, we have

CVim = Hpm+ Ky +0,(1) for m =1,2,3,5,6,
CViya = Hi+O,(NM)?+T724+(NMT)™"), and
CVig = Hi+O0,(N 24+ M 24+ T2+ (NMT)™).

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have
CVim — CVig = @4, >0 for m =1,2,3,5,6.

For the over-fitted case, we need to study CVy7 — CVy 4. Note that CVy 7 — CViu = w177 Zi’j,t(cfjmefj”

—ClitaChita) = L§4’7) + ng) + L:(;l’?), where LE,4’7) is defined analogously to L§2’4) for £=1,2,3. For Lg4’7),
we have by Lemmas A.4(iii), (vi) and A.12(iv),

1
4,7 * *
L = T MTU’ (Mp, = Mp,)U + 2 (U'Mp, X X}, X' Mp,U — U'Mp, X X}, X' Mp, U)
1
= %7 T, — MT§ et op (M + N =0,(M~ + N7,

it

Following the analysis of L52’3), we can show that Lé4’7) =op(M~1+N~1). For L:(,,4’7), we can apply Lemmas
A5, A.6 and A.14(iv) to obtain

@an _1+o _— . . 1 , B »
Ly = NZ\?T 22 it T ”tA)eith_Q(N +M )mztuijt-i-Op (M + N )
> 4,
In sum, we have proved

CVig —CVyy=2 (N_1 + M_l) —NJ%JT Zufjt — % Zﬂft T Zu]t + 0,( (M~'+ N7
it it

and then (N A M)(CVyrz — CVia) 2 q6(252 —T2¢) + ¢7(252 — 25) by Assumptions A.1(i) and A.2(v)-(vi).

Case 5: Model 5 is the true model. In this cases, Models 1, 2, 3, and 4 are under-fitted and Models 6
and 7 are over-fitted. By Lemmas A.8-A.11, we have

CVim = Hpy+ Ksm+0p(1), form=1,2,3,4,
CVss = Hs+Op(N24+(NMT)™),

CVsg = Hg+Op(N2+M 2+ (NMT)™1),

CVsz = Hri+Ou(N 2+ M ?+T 24+ (NMT)™").

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have
CVsm —CVs5 5 @5 > 0 for m=1,2,3,4.

We study the two over-fitted cases in order.
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Note that CVss — OVas = wipr Yo (Ginsehine — Cnseiins) = LY + L8 + LY where L is
defined analogously to LEQ 4 for £ = 1,2,3. By Lemmas A.4(iv)-(v) and A.12(v),

1 1 N N
L§5,6) = WU’(MDG—MDs)U+W(U'MDSXXDSX'MDE)U—U'MDGXXDGX’MDGU)

= Zu t+0p ):OP(M_l)-

Following the analysis of L§2’4), we can show that LS”G) =o0,(M™1). For Lg5’6), we can apply Lemmas A.5,
A.6 and A.14(v) to obtain

56 L+o0p( 1 _
L§ = NJ\;T 22 ijt.6 — hijes) €35 = 2M 1mzu?jt+OP<M Y-

g5t 4,95t
In sum, we have proved

1 _ _
CVs6—CVs5 =2M" 1NMTZ ijt — NTZU?-HFOP(M 0

7,7,t 2,t
and then M (CVs — CVss5) 2 20 -2 by Assumptions A.1(i) and A.2(v)
ote that 57 — 55 = (e, — R e, ) = g 4+ Ly, where s
N h CV: ’ CV: s NMT i,7,t 'th,7 it 7 jt,5 ?jt,d L§5 R Lg5 K LE; " h Lf) Vi
defined analogously to Lé2’4) for £ =1,2,3. By Lemmas A.4(iv)-(v) and A.12(vi),

1 1 ) \
e = sV (Mp; = Mpy) U + = (U'Mp, XX, X' Mp, U — U'Mp, X X}y, X' Mp, U)
1

N7 2, — MZ Fo,(MTt 4T Y =0, (Mt +T7Y).
i,

Following the analysis of L§2’4) , we can show that LS)’?)

A5, A6 and A.14(vi) to obtain

=o,(M~1+T71). For Lgf)j), we can apply Lemmas

7 L+o(
e = NJ\;T 22 ije7 ~ hijes) €5 =AM AT NMTZ“:JH‘OP(M +T7Y).

4,95t 4,5t
In sum, we have proved

1 1
_ -1 —2 —2 -1 1
CVsg—CVss=2(M " +T7} NMT > ul, - NT Eit Uit = NI Eij Uiy +op(M™ +T77)

it
and then (M AT) (CVsz — CVss) 2 q11(252 —52,) 4+ q12(262 — 525) by Assumptions A.1(i) and A.2(iv)-(v),
where ¢11 = hm(M,T)—»oo 1A % and g2 = hm(M,T)—»oo 1A %

Case 6: Model 6 is the true model. In this case, Models 1, 2, 3, 4 and 5 are under-fitted and Model 7 is
over-fitted. By Lemmas A.8-A.11, we have

CVsm = Hp+ Kom+o0p(l) form=1,2,3,4 and 5,
CVes = Hg+Op(N2+ M2+ (NMT)™),
CVor = Hr+Op(N 2+ M 2+T 24+ (NMT)™").

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have

CVsm — CVes g LN ©Vg,m > 0form=1,2,3,4 and 5.
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6,7 6,7 6,7
For CVg 7 — CVs 6, we have CVs7 — CVs6 = wpT Zi7j,t(cz2jt,7622jt,7 — i 6Chits) = Lg )+ Lé )+ Lz(s ),

where L&GJ) is defined analogously to L§2’4) for £ =1,2,3. By Lemmas A.4(iv)-(v) and A.12(vii),
67 _ _1 1 " "
LD = WU’ (Mp, = Mp,) U + == [U'Mp, X X, X' Mp,U — U'Mp, XX, X' Mp, U]

= Z . op(T ) :OP(T_l)'

4) (6,7)

Following the analysis of Lg’ , we can show that Ly " = 0,(T~'). For L:(f’?), we can apply Lemmas A.5,

A.6 and A.14(vii) to obtain
67 _1+o P _
Ly = NZ\;T ;2 ijtr — hijee) €506 = 2T 1m ”Ztuzzjt +o, (T7).
In sum, we have proved

_ 1
CV};7—C’V6,6:2T 1m2uijt NMZ +0p )

1,5t

and then T(CVs 7 — CVi6) 2 252 — G2, by Assumptions A.1(i) and A.2(iv).

1rCllase 7: Model 7 is the true model. In this case, Models 1-6 are all under-fitted. By Lemmas A.8-A.11,
we have

CVam —CVig B o 0 >0 for m=1,2,...,6.
This completes the proof of the theorem. W
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Table 3A: Frequency of the model selected: static panels, p =0

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7\M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) .99 .01 0 0 0 O O[O 1 O O O O OfO O .85.15 0 0 O0Of0 O 0 .99 0 0 .02
AIC (20,205) |1 0 O O O O OfO 1 O O O O O[O O .83.17 0 O O0O|O O O 1 0 O O
(10,10,00)fr 0 o 0 O O 0O 1 O O O O O|O O .94.06 0 0 0O|O O O 1 0 0 O
(10,10,200fr 0 o 0 0 o 0O 1 O O O O O|O O .99.010 0 0 O0O|JO O O 1 0 0 O
(20,20,200f 1 0 0o 0 0 O 0O 1 O O O O OlO O .99.00 0 O OO O O 1 0 O O
(10,10,5) 1 0 0o 0 0O O OfO 1T O O O O Of1 0 O O O O 0|98 0 0 O O O O
BIC (20,205) |1 0 0 O O O O|O 1 O O O O OJ1 0 O O O O O0(8.180 0 0 0 O
(10,10,00)fr o0 o 0 0 O 0O 1 O O O O Ol1 0 O O O O O|H6.440 0 0 0 O
(10,10,20)fr 0 o 0 0O O 0O 1 O O O O OfO1 0O .99 0 O O OO O O 1 0 0 O
(20,20,200 1 0 0 0 O O OO 12 O O O O O[3 0 .67 0 0 O O|O 050 .95 0 0 O
(10,10,5) (.98 .01 0 0 0 O OfO 1 O O O O OfO O .79.18 0 0 .03[{0 O O .96 0 0 .04
BIC, (20,205) |1 0 O 0 O O OfO 1 O O O O OfO O .84.16 0 0 0|0 O O 1 0 0 O
(10,10,10) o 0 o o o o0ofo0 1 0 OO O O[O O0..94906 0 0 O0fO0O 0 0 1 0 0 O
(10,10,20) o 0 o o o o0f0O 1 0 OO O OfO O0.99010 0 O0fO0O 0 0 1 0 0 O
(20,20,200 1t 0 0 0 O O O0O/O 1 O O O O O[O O 1 010 O O|JO O O 1 0 O O
(10,10,5) {.99 .01 0 0 0 O O|O 1 O O O O OfO O .93.07 0 0 O0f0O O O 1 0 0 O
CV (20,205)(1 0 0 O O O OO 1 0 O O O OO O .92.09 0 O 0|0 O O 1 0 0 O
(10,10,00)fr o0 o 0 0 o 0O 1 O O O O O|O O .9703 0 O O|O O O 1 0 O O
(10,10,200fr 0o o 0 0 o 0O 1 O O O O OfO O 1 010 O O|JO O O 1 0 0 O
(20,20,200 1 0 0o 0 0 O O0OfO 1 O O O O OflO O 99010 0 0O OO O O 1 0 O O
(10,10,5) {1 0 0 O O O OfO 1 O O O O 0(55.03.39.03 0 0 0 [.04.40 0 .55.01 0 O
Cv* (20205)|1 0 0 0 0 O 0|0 12 O O O O 0|58.02.37.04 0 0 0|0 47 0 .53 0 0 O
(10,10,00)fr o0 o 0 0 O 0O 1 O O O O O|O O .96.04 0 0O 0O O O 1 0 0 O
(10,10,20)f t 0 o 0 0O o0 0O 1 O O O O OfO O 1 010 O O|JO O O 1 0 0 O
(20,20,200 1t 0 0 0 O O OO 12 O O O O O[O O .99.00 0 0O O|O O O 1 0 O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7
(10,105 {0 0 0 0 1 O OfO O O O O 1 .01f0 0O O O O O 1
AIC (20,205) |0 0 O O 1 0O O0O|O O O O O 1 O0OJO O O O O O 1
(10,10,000)f 0 o0 o 0o 1 o0 0|JO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0 1 0O 0O|jO O O O O 1 O0O|O O O O O O 1
(20,20,200/0 0 0 0 1 0O 0OJO O O O O 1 O0O|O O O O O O 1
(10,10,5) .94 0 0 0 .06 0 Of1 O O O O O Of1 O 0 O O O O
BIC (20,20,5) {01 0 0 O .99 0 0|1 O O O O O O|1 O O O O O O
(10,10,00){ 1 0 o 0 o O 0|1 O O O O O O|1 O O O O O O
(10,10,200 1 0 0 0 o O 0|1 O O O O O O|1 O O O O O O
(20,20,20) .34 0 0 0 66 0 0|1 O O O O O O|1 O O O O O O
(10,10,5) | O 0 O O .98 .01.01{0 O O O O .98.02(0 0O O 0 O O 1
BIC, (20,205) {0 0 O 0 1 O OfO O O O O 1 0of0O O O O O O 1
(10,10,00)f 0 0 o 0 1 O 0O|JO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0 1 O 0O|JO O O O O 1 O0O|O O O O O O 1
(20,20200/ 0 0 0 0 1 O OJO O O O O 1 O|O O O O O O 1
(10,105 {0 0 0 0 1 O OfO O O O O 1 OfO O O O O O .95
CV (20,205)(0 0 0 0O 1 0 OfO O O O O 1 O[O O O O O O 1
(10,10,000)f 0 0 o o 1 o0 0|jO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0 1 O 0O|JO O O O O 1 O0O|O O O O O O 1
(20,20,200 0 0 0 0 1 O OJO O O O O 1 O0O|O O O O O O 1
(10,105) {0 0 0 0 1 O OfO0O O O O O 1 Of25.01 0 O .02.36 .37
Cv* (20205)|0 0 0 0 1 0 0|0 O O O O 1 0|0 O O O O .58.42
(10,10,00)f 0 0 o 0 1 0 0O|JO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0o 1 o0 0|jO O O O O 1 O0O|O O O O O O 1
(20,20200f0 0 0 0 1 0 0OJO O O O O 1 O0|O O O O O O 1

w
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Table 3B: Frequency of the model selected: static panels, p =1/4

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7\M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) |.77 .07 .13 .03 0 O .01{0 .73 0 .27 0 O .01f{0 O .84 .14 0 0 .01{0 O O .98 0 0 .02
AIC (20,20,5) |.92 .04.03.01 0 0 O|O .93 0 .07 0O O O|O O .84.16 0 0 O 0 1 0 0 O
(10,10,10) |.83 .06 .10 .01 0 O 0|0 .82 0 .18 0 0 OO O 9707 0 O O|O O O 1 0 O O
(10,10,20) |.88 02.09 0 0 O 0|0 .84 0 .16 0 0 O|O O .98.02 0 0 O|O O O 1 0 O O
(20,20,20) |.97 02.01 0 0 O 0|0 .99 0 01 O 0O O|O O .99.01 0 0 0O O O 1 0 0 O
(10,10,5) fr 1 0o 0 0O O OfO 1 O O O O Of1 0 O O O O 09703 0 0 O O O
BIC (20,205) |1 1 0 O O O O|O 1 O O O O OJ1 0 O O O O O0(8.180 0 0 0 O
(10,10,00)fr o0 o 0 O O OO 1 O O O O O[99 0 .00 0 O O O |[.77.21 0 .03 0 0 O
(10,10,20)fr 0 o 0 0O O 0OfO 1 O O O O OfO1 0 .99 0 O O OO O O 1 0 0 O
(20,20,200 1t 0 0 0 0 O O0O/fO 121 O O O O O13 0 .87 0 O O OO .01 0 .99 0 0 O
(10,10,5) .53 .07 .31 .08 0 O .02/ 0 .45 0 .52 0 0O .03f0 O .78 .18 0 0 .04{0 O O .95 0 0 .05
BIC, (20,20,5) [.94 04.02 0 0 O OO .95 0 050 O O0Of(0O O .85.16 0 0 0|0 0O O 1 0 0 O
(10,10,10) |.78 .07 .15.01 0 O 0|0 .77 0 23 0 O O|O O .93.0Tr 0 O O|O O O 1 0 O O
(10,10,20) |.90 02 .08 0 0 O 0|0 .87 0 .13 0 0 OO 0 .99.02 0 0O O|O O O 1 0 O O
(20,20,200 1 0 0 0 O O OO 12 O O O O OflO O 9900 0 0O O|O O O 1 0 O O
(10,10,5) {.90 .07 .03 0 0 O OO0 .95 0 .05 0 O OfO0O O .93.07 0 0 O0Of0O O O 1 0O 0 O
CV (20,205) .96 .04 0 O 0 O OO 1 O O O O OO O .92.09 0 O 0|0 O O 1 0 O O
(10,10,10) |.89 .06 .06 0 0 O 0|0 .93 0 07 O O O|O O .96.04 0 0O 0O|O O O 1 0 0 O
(10,10,20) |.91 .03 .06 0 0 O 0|0 .91 0 09 0 0 O|O O .99.001 0 0 0O O O 1 0 0 O
(20,20,20) |.97 02.01 0 0 O 0O 1 O O O O O|O O .99.01 0 0 OO O O 1 0 0 O
(10,10,5) 1 0 0 0O O O OfO 1 O O O O O0[79.06.14.02 0 0 0 [.03.74 0 .23.01 0 O
Cv* (20205)|1 0 0 0 0O O 0|0 12 O O O O 0]9.02.02 0 0 0 010195 0 .04 0 0 0
(10,10,00)fr o0 o 0 0 o 0fO 1 O O O O O|O O 9703 0 O O|O O O 1 0 0 O
(10,10,20)f t 0 o 0 0O o0 0O 1 O O O O OfO O 1 010 O O|JO O O 1 0 0 O
(20,20,200 1t 0 0 0 O O OO 12 O O O O O[O O .99.00 0 0O O|O O O 1 0 O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7
(10,10,5) {0 0 O O .79 0 2000 0O O O O .27.73/0 0 0O O O O 1
AIC (207207a) o 0 0O o0 .97 0 O30 O O O O .63.3710 0O O O O O 1
(10,10,00){ 0 0 O O .98 0 .02/0 O O O O .36 .64/0 0 O O 0 O 1
(10,10,200f 0 0 0 0 1 O O|O O O O O .49.600/0 O O O O O 1
(20,20,200/ 0 0 0 0 1 O O|O O O O O .82.18/0 0O O O O O 1
(10,10,5) {.97 0 0 0 .03 0 Of1 O O O O O Of1 O 0 O O O O
BIC (20,20,5) |.06 0 0 O .94 0 0|1 O O O O O O|1 O O O O O O
(10,10,00){ 1 0 o 0 o O 0|1 O O O O O O|1 O O O O O O
(10,10,200 1 0 0 0 o O 0|1 O O O O O O|1 O O O O O O
(20,20,20) .79 0 0 0 .22 0 0|1 O O O O O O|1 O O O O O O
(10,10,5) | O 0 O O .50 0 500 O O O O .12.8/0 0 0O 0 O O 1
BIC, (20,205) | 0 0 O O .98 0 .02f0 0O O O O .70.30/0 O O O O O 1
(10,10,100){ 0 0 O O .96 0 .04/0 O O O O .28.72/0 0 O O O O 1
(10,10,200f 0 0 0 0O 1 O O0O|O O O O O .43 5710 0 O O O O 1
(20,20200/ 0 0 0O 0O 1 O O|O O O O O .99.01/{0 O O O O O 1
(10,105) {0 0 0O 0O 1 O OfO O O O O .96.04/0 0 0 0 O O 1
CV (20,205)(0 0 0 0O 1 0 OfO O O O O 1 O[O O O O O O 1
(10,10,00)f 0 0 o 0o 1 O 0O|JO O O O O .93.0710 O O O O O 1
(10,10,200f 0 0 0 0 1 O O0O|JO O O O O .92.08/0 O O O O O 1
(20,20,200 0 0 0 0 1 O OJO O O O O 1 O0O|O O O O O O 1
(10,105) |0 0 0 0 1 O OfO O O O O 1 oOfor 0O O O .01.74.18
Ccv* (20205)|0 0 0 0 1 0 0|0 O O O O 1 0|0 O O O O .98.02
(10,10,00)f 0 0 o 0 1 0 0O|JO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0o 1 o0 0|jO O O O O 1 O0O|O O O O O O 1
(20,20200f0 0 0 0 1 0 0OJO O O O O 1 O0|O O O O O O 1

w
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Table 3C: Frequency of the model selected: static panels, p =1/3

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7\M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) .33 .05 .51 .10 0 ©0 .01{0 .29 0 .70 O O .01f0 O .84 .15 0 0 .01{0 O O .98 0 0 .02
AIC (20,20,5) [.28 .03 .57 .11 0 O O|0O .21 0 .79 0 0O O[O O .84.16 0 0 O 0 1 0 0 O
(10,10,10) |.41 .06 .50 .04 0 O 0|0 .37 0 63 0 O O[O O .93.0r 0 O O|O O O 1 0 O O
(10,10,20) |.45 .02 .52.01 0 0O 0|0 .43 0 570 0 OO 0 .98.02 0 0O O0O|O O O 1 0 0 O
(20,20,20) |.42 .03 5402 0 0 0|0 .39 0 61 0 0 O|O O .98.02 0 0O O0O|O O O 1 0 0 O
(10,10,5) 1 0 0o 0 0O O OfO 1 O O O O Of1 0 O O O O 09703 0 0 O O O
BIC (20,205) |1 0 0 O O O O|O 1 O O O O OJ1 0 O O O O O0(8.180 0 0 0 O
(10,10,00)fr o0 o 0 O O OO 1 O O O O O[99 0 .02 0 0 0O 0].76.19 0 .05 0 0 O
(10,10,20)fr 0 o 0 0O O 0OfO 1 O O O O OfO1 0 .99 0 O O OO O O 1 0 0 O
(20,20,200 1t 0 0 0 O O OfO 12 O O O O O|14 0 .86 0O O O OO .02 0 .99 0 0 O
(10,10,5) |.13 .03 .66 .14 0 O .04/ 0 .12 0 .83 0 0O .050 O .78 .18 0 0O .04{0 O O .95 0 0 .06
BIC, (20,20,5) [.35 .03 .52.10 0 O OO .28 0 720 O Of(0O O .8.15 0 0 0|0 0 O 1 0 0 O
(10,10,10) |.31 .04 .59 06 0 0O 0|0 .30 0 .70 0 0O OO 0 .92.08 0 0 0O|O O O 1 0 O O
(10,10,20) |.49 02 48 .01 0 O 0|0 .46 0 54 0 0 O[O O .98.02 0 0O O|O O O 1 0 0 O
(20,20,20) |.86 .03 .11 0 0O O 0|0 .86 0 .14 0 0 OO 0 .99.01 0 0 O|O O O 1 0 0 O
(10,10,5) |.63 .10 .25 .02 0 0O O[O0 .66 0 34 0 O OO O .92.080 0 O0Of0O O O 1 0 0 O
CvV (20,205) (.77 .11.11.02 0 0 O|O .83 0 .17 0 O O0O|O O .92.09 0 0 0|0 O O 1 0 0O O
(10,10,10) |.55 .08 35 0 0O O 0|0 .59 0 41 0 O OO O .95.05 0 0 O0O|O O O 1 0 O O
(10,10,20) |.53 .02 .45 0 0 O 0|0 .53 0 47 0 O O|O O .99.01 0 0 0O|O O O 1 0 0 O
(20,20,20) |.56 .05 .39 .01 0 0 0|0 .56 0 4 0 0 OO 0 .99.01 0 0 0O O O 1 0 0 O
(10,10,5) fr 0 0 0O O O OfO 1 O O O O O(8.06.12.02 0 0 0 [.03.78 0 .18 .01 0 O
Cv* (20205)|1 0 0 0 0 O 0|0 12 O O O O 0]9%.03.0L 0 0 0 010197 0 .02 0 0 0
(10,10,00)fr o0 o 0 0 o 0fO 1 O O O O O|O O 9703 0 O O|O O O 1 0 0 O
(10,110,200t 0 o 0 0O O 0O 1 O O O O O[O O .99.01 0 0O O|O O O 1 0 0 O
(20,20,200 1t 0 0 0 O O OO 12 O O O O O[O O .99.00 0 0O O|O O O 1 0 O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7
(10,10,5) {0 0 O O .38 0 620 0O O O O .05.950 0 0O 0O O O 1
AIC (207207a) o 0 0O o0 .39 0 610 O O O O .02.98/0 O O O 0 O 1
(10,10,00) 0 0 0o O .85 0 .150 O O O O .07 930 0O O O O O 1
(10,10,200f 0 0 0o 0 1 O OO O O O O .10.90 O O O O O 1
(20,20,200/ 0 0 0 0 1 O O|O O O O O .08.92/10 0 O O 0 O 1
(10,10,5) .98 0 0 0 .02 0 Of1 O O O O O Of1 0o 0 O O O O
BIC (20,20,5) |.13 0 O O .87 0 0|1 O O O O O O|1 O O O O O O
(10,10,00){ 1 0 o 0 o O 0|1 O O O O O O|1 O O O O O O
(10,10,200 1 0 0 0 o O 0|1 O O O O O O|1 O O O O O O
(20,20,20) |97 0 0 0 04 0 0|1 O O O O O O|1 O O O O O O
(10,10,5) | O 0 O O .14 0 .86/0 O O O 0 .02.98(0 0O O 0 O O 1
BIC, (20,205) | 0 0 O O .46 0 .54/0 0 O O O .04.96/0 0 0 0O O 0 1
(10,10,100){ 0 0 O O .75 0 250 O O O O .04 .96/0 0 O O O O 1
(10,110,200 0 0 0o 0 1 O O0O|JO O O O O .1189|0 0 0O O 0 O 1
(20,20,200/0 0 0O O 1 O O|O O O O O .39.61|0 O O O O O 1
(10,10,5) {0 0O O O .98 0 .02(0 0 O O O .72.29/0 0 0O O O O 1
CV (20,205) {0 0O O O .99 0 .01/{O O O O O .85.15/0 0 0O O O O 1
(10,10,00)f 0 0 o 0o 1 O 0O|JO O O O O .61.3990 0 O O O O 1
(10,10,200f 0 0 0 0 1 O O0O|O O O O O .53 4710 O O O O O 1
(20,20,200 0 0 0O 0O 1 O O|O O O O O .58 .42/0 0 O O O O 1
(10,105) |0 0 0 0 1 O OfO O O O O 1 o003 0 0 O .01.80.16
Ccv* (20205)|0 0 0 0 1 0 0|0 O O O O 1 0|0 O O O O .99.01
(10,10,00)f 0 0 o 0 1 0 0O|JO O O O O 1 O0O|O O O O O O 1
(10,10,200f 0 0 o 0o 1 o0 0|jO O O O O 1 O0O|O O O O O O 1
(20,20200f0 0 0 0 1 0 0OJO O O O O 1 O0|O O O O O O 1
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Table 3D: Frequency of the model selected: static panels, p = 3/4

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) | O 0 .81.17 0 O .02/0 O O .97 0 0 .04/0 O .81.17 0 O .02/0 O O .97 0 0 .02
AIC (20,205) |0 O 84.16 0 0 O|O O O 1 O O OfO O .84.16 0 0 0|0 O O 1 0 O O
(10,10,100){ 0 0 .88.12 0 0 00O O O 1 O O O[O O .88.13 0 0 0|0 O O 1 O O O
(10,10,200 0 0 9407 0 0 0O O O 1 O O O[O O .94.07 0 0O 0|0 O O 1 0O 0O O
(20,20,200 0 0 9307 0 0 0O O O 1 O O O[O O .93.07 0 O 0|0 O O 1 0O O O
(10,10,5) {.89 0 .10 0 0 O O0f01.62 0 36 0 0 0]29 0 .70.01 0 O 0{26.01 0 .73 0 0 O
BIC (20,205) |1 0 0 O O O 0|0 12 O O O O Of1 0O O O O O 09 .050 0 0 0 O
(10,10,10) (.75 0 25 0 O O 0|0 .57 0 44 0 O O0f02 0 .98 0 0 O 0{02 0 0 .97 0 0 O
(10,10,20) (.80 0 20 0 0 O 0|0 .69 0 32 0 O OfO0O O 1 0 O O 0|0 O O 1 0O O O
(20,20,200 1t 0 0o 0 0 0o 0O 2 O O O O OfO O 1 0 O O O|{0O O O 1 O O O
(10,10,5) | O 0 .75.18 0 0O .06/0 O O .93 0 0 .07/0 O .75.19 0 0 .06/0 O O .92 0 0O .08
BIC, (20,205) | 0 0 84.16 0 0 OO O O 1 O O O|O O .84.16 0 0 0|0 O O 1 0 0 O
(10,10,10) 0 0 87.13 0 0o 00O O O 1 O O O[O O .87.13 0 0 0|0 O O 1 0O O O
(10,10,20)| 0 0 9406 0 0 00O O O 1 O O O[O O .94.06 0 0 0|0 O O 1 0O O O
(20,20,200 0 0 9505 0 0 00O O O 1 O O O[O O .95.05 0 O 0|0 O O 1 0O O O
(10,10,5) | O 0 90.11 0 0 O|O O O 1 O O OO O .90.10 0 O O|O O O 1 0 O O
CV (20,205) |0 0 91.10 0 0 OO O O 1 O O OfO O .90.100 0O O[O O O 1 0 O O
(10,10,00) 0 0 91.10 0 o0 0O O O 1 O O O[O O .92.09 0 0 0|0 O O 1 O O O
(10,10,200 0 0 9506 0 0 0O O O 1 O O O[O O .95.06 0 0 0|0 O O 1 O O O
(20,20,200 0 0 9505 0 0 00O O O 1 O O O[O O .95.05 0 O 0|0 O O 1 O O O
(10,105) {1 0 o 0 O O OfO 1 O O O O O0].65.16.18.02 0 0 0]01.67 0 .30.02 0 O
Ccv* (20205)|1 0 0 0 0 0O 0|0 12 O O O O 0[8.12.05.01 0 0 0|0 .89 0 .10 0 0O O
(10,10,00)fr 0 o 0 0O O OO 1 O O O O O[O .01.96.03 0 0 0|0 .02 0 .98 0 0 O
(10,110,200t 0 o 0 0 o 0fO 12 O O O O OfO O 1 0 O O O|{0O O O 1 O O O
(20,20,200 1 0 0 0 O O OO 12 O O O O O[O O .99.01 0 O 0|0 O O 1 O O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7[M1 M2 M3 M4 M5 M6 M7
(10,105 {0 0 0 0O 0o O 1(0 O O O O O 1|0 O O O O 0 1
AIC (207207a) 0 0o 0o o 0O 1/]0 0 00O 0 1]0 0 0 0 0 0 1
(10,10,000 0 o0 o 0 o0 O 1|0 O O O O O 1f{0 O O O O O 1
(10,10,200 0 0 o0 0 0 O 1|0 O O O O O 1f0 O O O O O 1
(20,20,200 0 0 0 0 0 O 1|0 O O O O O 1f0 O O O O O 1
(10,10,5) {.99 01 0 0 O O 099 0 0 0 O O O|1 O O O O O O
BIC (20,205) |1 o 0 O O O O|1 O O O O O Of1 0 O O O O O
(10,10,10) |99 01 0 0 o0 0 0|1 O O O O O Of1 0o 0 O O O O
(10,10,20) |99 0 01 0 0 O 0|1 O O O O O O0f98 0 .02 0 0 0 O
(20,202001 0o 0 0 0 0O 0|1 O O O O O Of1 0o O O O O O
(10,105) 0 0 0 0 Oo O 1/{0 O O O O O 1]J]0 O O O O O 1
BIC, (20,205) {0 0 O 0 O O 1(0 O O O O O 1]J]0 O O O O O 1
(10,10,00) 0 0 o 0 o0 O 1|0 O O O O O 1f0 O O O O O 1
(10,110,200 0 0 0 0 O O 1|0 O O O O O 1f0 O O O O O 1
(20,20,200 0 0 0 0 O O 1|0 O O O O O 1f0 O 0 O O O 1
(10,10,5) {0 0 O O O O 990 0 O O O O 1]JO0 O O O O O .95
CV (20,205) |0 0 O O O O 10 O O O O O 1|0 O O O O 0 1
(10,10,100) 0 0 .01.01 0 0 980 O O O O O 1f0 O O O O O 1
(10,10,20)| 0 0 .08.05 0 0 87/0 O O O O O 1({0 O O O O O 1
(20,20,200 0 0 0 0 0 O 1|0 O O O O O 1f0 O O O O O 1
(10,105) | O 0 0O O 1 O O[O O O O O 1 0]25.01 0 0O 0 .74.25
Ccv* (20205)|0 0 0 0 1 0 0|0 O O O O 1 Ol0O O O O O .93.07
(10,10,00){ 0 0 0o 0 1 0 0|0 O O O O 1 OfO O O O O .03.98
(10,110,200 0 0 o 0 1 0 0O|O O O O O 1 OfO O O O O O 1
(20,20,200f0 0 0o 0 1 0 0O O O O O 1 OfO0O O O O O O 1
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Table 4: Frequency of the model selected: dynamic panels, 8 = (1,3/4)’

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7\M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) |.49 0 .42 .08 0 O .01{0 .20 O .78 0O O .02f0 O .84.15 0 0 .01{0 O O .98 0 0 .02
AIC (20,20,5) |.53 0 40.07 0 0O O|0O .21 0 .79 0 0 O|O O .85.15 0 0 O 0 0 1 0 0 O
(10,10,10)|.95 0 .04 0 0 O 0|0 .82 0 .18 0 0 O|O 0 .94.06 0 0 0O|O O O 1 0 0 O
(10,110,200t 0 o 0 O O 0|0 .99 0 01 O 0O O|O O .99.001 0 0 0O O O 1 0 0 O
(20,20,200f 1 0 0o 0 0 O 0O 1 O O O O OlO O .99.00 0 O OO O O 1 0 O O
(10,10,5) 1 0 0 O O O Of04.96 0 0 0 0 Of1 0 O O O O 01486 0 0 0 0 O
BIC (20,205) |1 0 0 O O O O|O 1 O O O O OJ1 0 O O O O O]0O595 0 0 0 0 O
(10,10,00)fr 0o o 0 0 o 0O 1 O O O O Of1 0 O O O O OO 1 O O O O O
(10,10,20)fr 0 o 0 0 o 0O 1 O O O O Of1 0 O O O O OO 1 O O O O O
(20,20,200 1t 0 0 0 0 O 0OfO 12 O O O O Of1 0 O O O O O|JO 1 O O O O O
(10,10,5) {.20 0 .61 .15 0 O .04{0 .07 0 .88 0 0O .050 0 .79.18 0 0 .04{0 O O .95 0 0 .05
BIC, (20,20,5) .62 0 32.06 0 0 O|0O .28 0 720 O O(0O O .86.14 0 0 0|0 0O O 1 0 0 O
(10,10,10) |.91 0 .08 .01 0 0 0|0 .73 0 27t 0 O O|O O .93.0Tr 0 O O|O O O 1 0 O O
(10,10,200f r 0 o 0 O O 0fO 1 O O O O O|O O 9901 0 0O O|O O O 1 0 O O
(20,20,200 1 0 0 0 O O OO 12 O O O O OflO O 9900 0 0O O|O O O 1 0 O O
(10,10,5) |.87 0 .11.02 0 0 0|0 .65 0 35 0 0O 0|04 O .89.08 0 0 OO0 O O 1 0 0 O
CV (20,205) .98 0 02 0 0O O OO .91 0 .09 0O 0O 0O|O O .93.080 0 0|0 O O 1 0 0 O
(10,10,10)|.99 0 .01 0 0 O 0|0 .94 0 06 0 0 O|O O .96.04 0 0O 0O O O 1 0 0 O
(10,10,200fr 0 o 0 0 o 0O 1 O O O O O|O O .99.010 0 0O O|JO O O 1 0 0 O
(20,20,200 1 0 0o 0 0 O O0OfO 1 O O O O OflO O 99010 0 0O OO O O 1 0 O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7
(10,10,5) | O 0 O O .53 0 470 O O O O .05.950 0O O 0 O O 1
AIC (20,20,5) |0 O O O .61 0O .40|0 0 0 0 .05.96/0 0 0 0 O 1
(10,10,100){ 0 0 O O .99 0 .01/0 O O O O .46 54/0 0 O O 0 0 1
(10,10,200 0 0 0 0 1 O O0O|O O O O O .90.11|0 O O O O O 1
(20,20,2000 0 0 0 1 0 0OJO O O O O 1 O0|O O O O O O 1
(10,10,5) .06 0 O O .94 0 0|14 .06 0 0 .01.79 0|21 0 0O O .01.78 O
BIC (20,205 |0 O O O 1 0 O{O0O O O O O 1 0|0 O O O O 1 O
(10,10,10) .10 0 0 0O .90 0 0|45 .13 0 O O .42 0(62.01 0 0O 0 .37 O
(10,10,20) |26 0 0O O .74 0 0|8 .14 0 0 O .01 0|98.02 0 0 0 O O
(20,20200 0 0 0 0 1 O O|O O O O O 1 O|O O O O O 1 O
(10,10,5) {0 0 O O .20 O .80/0 O O O O .01.990 0 0O O O O 1
BIC» (20,205) |0 0O O O .70 O .30/0 O O O O .07.930 0 0O O O O 1
(10,10,00)f 0 0 0 0 .99 0 .01Y0O O O O O .37 630 O O O O O 1
(10,10,200f 0 0 0 0 1 O O0O|JO O O O O .92.09/0 0 O O O O 1
(20,20,200/0 0 0 0 1 O OJO O O O O 1 O0O|O O O O O O 1
(10,105) |0 0 0 0O 1 O OfO O O O O .86.150 0O 0 O O .06.94
cv (20,205) |0 O 0O O 1 O O|O O O O O .98.02/0 0 O O O O 1
(10,10,00){ 0 0 0 0O 1 O O0O|O O O O O .98.02/0 0O O O O O 1
(10,10,200f 0 0 o 0o 1 o0 0|JO O O O O 1 O0O|O O O O O O 1
(20,20200f0 0 0 0 1 0 0OjO O O O O 1 O0|O O O O O O 1
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Table 5: Frequency of the model selected: dynamic panels with exogenous regressors

True model: M1

True model: M2

True model: M3

True model: M4

Selected models

Selected models

Selected models

Selected models

(N,M,T) |M1M2M3M4 M5 M6 M7\M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7(M1 M2 M3 M4 M5 M6 M7
(10,10,5) |.72 .01 .23 .04 0 O .01|0 .41 O .57 0 0O .02[.06 0 .79 .14 0 O .01{0 O O .98 0 0 .02
AIC (20,20,5) |.90 0 .08.02 0 0 O|O .66 0 34 0 0 0|0 O .85.15 0 0O 0|0 O O 1 0 O O
(10,10,10) |.98 01 .02 0 0 O 0|0 .93 0 08 O 0 O[O O .94.06 0 0 0|0 O O 1 0 0 O
(10,10,200fr 0 o 0 0 o 0O 1 O O O O O|O O .99.010 0 0 O0O|JO O O 1 0 0 O
(20,20,200f 1 0 0o 0 0 O 0O 1 O O O O OlO O .99.00 0 O OO O O 1 0 O O
(10,10,5) {1 0 0o 0O O O Of10.90 0 0 0 O Of1 0 O O O O 032680 0 0O 0 O
BIC (20,205) |1 0 0 O O O 0]01.99 0 0 0 O 0|1 0 O O O O 01189 0 0 0 0 O
(10,10,00)fr o0 o 0 0 o 0O 1 O O O O Of1 0 O O O O 00397 0 0 0 0 O
(10,110,200t 0o o 0 0 o 0O 1 O O O O Of1 0 O O O O O|JO 1 O O O O O
(20,20,200 1t 0 0 0 0 O 0OfO 12 O O O O Of1 0 O O O O O|JO 1 O O O O O
(10,10,5) {.39 0 .46 .11 0 ©0 .03/ 0 .16 0 .78 0 O .06{0 O .78 .17 0 0O .04{0 O O .95 0 0 .05
BIC2 (20,20,5) .94 0 .05.01 0 0 OO .75 0 26 0 0O OO O .85.15 0 0 0|0 0O O 1 0 0 O
(10,10,10) |.97 01 .03 0 0 O 0|0 .86 0 .14 0 0 OO 0 .93.07r 0 O O|O O O 1 0 0 O
(10,10,200f r 0 o 0 O O 0fO 1 O O O O O|O O 9901 0 0O O|O O O 1 0 O O
(20,20,200 1 0 0 0 O O OO 12 O O O O OflO O 9900 0 0O O|O O O 1 0 O O
(10,10,5) |.96 0 04 0 0 O O[O .84 0 .16 0 O 036 0 .60.04 0 0 0|0 .09 0 .92 0 0 O
CV (20,205)1 0 0 O 0O O OfO 1 O O O O 0O[220 .72.07 0 0 0|0 .02 0 .98 0 0 O
(10,10,10)|.99 0 o 0 O O 0|0 .98 0 02 0 O 0|04 0 .93.04 0 0O 0O O O 1 0 0 O
(10,10,200fr 0 o 0 0 o 0O 1 O O O O O|O O .99.010 0 0O O|JO O O 1 0 0 O
(20,20,200 1 0 0o 0 0 O O0OfO 1 O O O O OflO O 99010 0 0O OO O O 1 0 O O
True model: M5 True model: M6 True model: M7
Selected models Selected models Selected models
(N,M,T) |M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7|M1 M2 M3 M4 M5 M6 M7
(10,105) | 0 0 O O .72 0 .30/0 O O O O .14 .87/0 O 0O O O .01.99
AIC (20,20,5) |0 O O O .90 0O .10/ 0 0 0 0 .30.70/0 0 0O O O 0 1
(10,10,00)f 0 0 0o 0 1 O O0O|O O O O O .63.37/0 O O O O O 1
(10,10,200 0 0 0 0 1 O O0O|O O O O O .93.0710 O O O O O 1
(20,20,2000 0 0 0 1 0 0OJO O O O O 1 O0|O O O O O O 1
(10,10,5) .94 0 0O O .06 0 0|48 04 O O 37.11 01 0O O O O O O
BIC (20,20,5) .02 0 0 O .98 0 0|1 O O O .01 1 0|1 O O O O O O
(10,10,100) 1 0 0 0O O O 0|82 .04 0 0 .15 0 0|1 0 O O O O O
(10,10,20)f 1 01 0 0 O O 0|99 .01 0 0 0O O O|1 O O O O O O
(20,20,20) .35 0 O O .65 0 0|0 O O O .04.96 0|1 0 O O O O O
(10,10,5) {0 0O O O .36 0 64{0 0O O O O .05.96/0 0 0 O O .01.99
BIC» (20,205) |0 0 O O .95 0 .05)0 O O O O .33.630 0 O O O O 1
(10,10,00)f 0 0 0o 0 1 O 0|0 O O O O .54 .46/0 0 O O O O 1
(10,10,200f 0 0 0 0 1 O O0O|O O O O O .94.06)0 0 O O 0 O 1
(20,20,200/0 0 0 0 1 O OJO O O O O 1 O0O|O O O O O O 1
(10,105) |0 0 0O O 1 O O[O O O O O .95.050 0O 0 O O .44 .57
cv (20,205) |0 O 0O O 1 O 0O|O O O O O 1 O0O|JO O O O 0 .24.76
(10,10,00){ 0 0 0 0 1 O O|O O O O O .99.0110 O O O 0 .08 .92
(10,0200 0 0 o 0o 1 0 0|JO O O O O 1 O0O|O O O O O O 1
(20,20200f0 0 0 0 1 0 0OjO O O O O 1 O0|O O O O O O 1
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Table 6A: Technology and contractions: Specification A

Model selection

Estimate and 95% CI of 3,

AIC BIC BICq (A% CV* estimate 95% CI
Model 1 -1.900 -1.899 -1.900 0.150 0.141 -0.0002 [-0.0098  0.0094]
Model 2 -1.937  -1.908 -1.936 0.145 0.134 -0.0279 [-0.0402 -0.0156]
Model 3 -1.892 -1.436 -1.872 0.162 0.148 -0.0314  [-0.0437  -0.0191]
Model 4 -1.904 -1.442 -1.883 0.160 0.146 -0.0304  [-0.0427 -0.0181]
Model 5 -1.904 -1.738 -1.897 0.150 0.141 -0.0267  [-0.0392 -0.0142]
Model 6 -2.098 -1.557 -2.075 0.126 0.113 -0.0130 [-0.0242 -0.0018]
Model 7 -2.082 -1.108 -2.039 0.147 0.126 -0.0141 [-0.0251  -0.0031]
Selected model M6 M2 M6 M6 M6

Notes: The dependent variable is value added

. The independent variables include Contractionx EFD and the control

variable for Specification A. 3, is the coefficient on Contractionx EFD. "CI" stands for "confidence interval". The CI

is based on the heteroskedasticity-robust standard errors. The total sample size is 57,115.

Table 6B: Technology and contractions: Specification B

Model selection

Estimate and 95% CI of 8

AIC BIC BIC» (6)% cv* estimate 95% CI
Model 1 -1.903 -1.901 -1.903 0.149 0.140 0.0107 [-0.0134  0.0348]
Model 2 -1.940 -1.909 -1.938 0.144 0.134 -0.0274  [-0.0584  0.0036]
Model 3 -1.894 -1.436 -1.874 0.162  0.147 -0.0297  [-0.0601  0.0007]
Model 4 -1.906 -1.442 -1.885 0.160 0.145 -0.0296  [-0.0596  0.0004]
Model 5 -1.908 -1.740 -1.900 0.149 0.140 -0.0165  [-0.0477  0.0147]
Model 6 -2.099 -1.556 -2.075 0.126  0.113 -0.0163  [-0.0439 0.0113]
Model 7 -2.082  -1.107 -2.039 0.149 0.127 -0.0236  [-0.0510 0.0038]
Selected model M6 M2 M6 M6 M6

Notes: The dependent variable is value added

. The independent variables include Contraction X EFD and the control

variable for Specification A, and Contractionx EFD, Contractionx DEP, Contraction xISTC, ContractionxRND,
Contraction xHC, Contraction x LAB, Contraction xFIX, Contraction x LMP, Contraction xSPEC, Contraction XINT,

and the control variable for Specification B. 3, is the coefficient on Contraction x EFD. "CI" stands for "confidence

interval". The CI is based on the heteroskedasticity-robust standard errors. The total sample size is 57,115.

Table 7A: Gravity equations: Specification A

Model selection

Estimate and 95% CI of 3,

AIC BIC  BICq cv Ccv* estimate 95% CI
Model 1 1.077  1.078 1.077 2.937 0.237 1.214 [1.206 1.223]
Model 2 0.309 0.332 0.310 1.363 0.183 0.333 [0.297 0.369]
Model 3 -0.668 -0.465 -0.660 0.515 0.165 1.252 [1.247 1.258]
Model 4 -0.710 -0.496 -0.701 0.493 0.162 1.277 [1.239 1.316]
Model 5 0.874  1.188  0.888 2.398 0.225 1.345 [1.328 1.362]
Model 6 0.240  0.856  0.266 1.281 0.184 -0.002 [-0.040 0.036]
Model 7 -1.080 -0.273 -1.045 0.347 0.156 0.657 [0.577 0.738]
Selected model M7 M4 M7 M7 M7

Notes: The dependent variable is In(Export;j¢). The independent variables include In(GDP;;+GDP ;) for

Specification A. "CI" stands for "confidence interval". The CI is based on the heteroskedasticity-robust standard

errors. The total sample size is 48,403.
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Table 7B: Gravity equations: Specification B

Model selection Estimate and CI of 8, Estimate and 95% CI of B,
AIC BIC BICo (A CV*  estimate 95% CI estimate 95% CI
Model 1 1.075 1.076  1.075 2.931 0.236 1.251 [1.240 1.262] -0.100 [-0.120  -0.079]
Model 2 0.287  0.310 0.288 1.333 0.182 0.657 [0.614 0.701] -0.714 [-0.762  -0.665]
Model 3 -0.670 -0.466 -0.661 0.514 0.165 1.217 [1.208 1.227] 0.335 [0.245 0.425]
Model 4 -0.713  -0.499 -0.704 0.492 0.162 1.262 [1.224  1.300] 0.461 [0.370 0.552]
Model 5 0.826  1.139 0.839 2.284 0.224 1.951 [1.919 1.982] -0.844 [-0.880  -0.809]
Model 6 0.228  0.845 0.255 1.267 0.185 0.340 [0.285 0.395] -0.550 [-0.605  -0.495]
Model 7 -1.082 -0.275 -1.048 0.346 0.156 0.619 [0.539  0.700] 0.864 [0.664 1.064]
Selected model M7 M4 M7 M7 M7

Notes: The dependent variable is In(Export;;¢). The independent variables include In(GDP;;+GDP ;) and In(POP;;+POP ;)
for Specification B. "CI" stands for "confidence interval". The CI is based on the heteroskedasticity-robust standard errors.
The total sample size is 48,403.
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Supplementary Appendix to
“Determination of Different Types of Fixed Effects
in Three-Dimensional Panels

(NOT for Publication)
Xun Lu?, Ke Miao® and Liangjun Su®

¢ Department of Economics, Chinese University of Hong Kong
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This supplement is composed of three Appendices. Appendix B contains the proof of Theorem 4.1; Appendix
C contains the proofs of the technical lemmas in Appendices A and B; Appendix D contains the Nickell biases
for the seven estimators of the slope coefficient in the panel AR(1) model.

B Proof of Theorem 4.1

To prove Theorem 4.1, without loss of generality and for notational simplicity we consider the AR(1) filtering
for {wij¢,t > 1}. Let Uyj = (G52, ..., Uijr)’, U = (W, oo W s ooy Uy ooy Uniag) s zij = (251, -, Zijr—1) and
7 = (Z11s s 200> s EN1s 0 Eag) - Let wy; = (uij2, .., uijr), U= (u117...7u1’M,...,u’N,l,...,u'NM)’, and
Zij = (Tij,1, o Uijr—1)", where @iy = Uit —Wit —Wij. —W.jy+0i AW AUt Let Yy, iy Yojos Yoot it Yoo and
Y.j+ be defined analogously to tijt, Y., Y.j.s Yoty Yits Yij.r and Y., Hereafter let Zid"t = Zfil Zﬁl Zthz,
Sie =00 Y X = Sty Mg and 0, = 20

Lemma B.1 Let nyyr = (NMT)™Y/2 4+ N7+ M~1 + T, Suppose that the conditions in Theorem 4.1
hold. Then

(Z) NMT (ZIZ z' Z) Op(ﬁNMT)?
(ii) NMT (Z U - ZU) @) (77NMT)

AA—AA

(i) (Z'Z) Z'U —p= 0O (UNMT)

= 1 / =1 _
Lemma B.2 Let Zijtm = Zijt,m — PZijt—1,m ond Qm = mzi’jtvmzmm(ZmZm) zZ! U for m =

2, ..., 7. Suppose that the conditions in Theorem 4.1 hold. Then
(i) Q1 = Op(NMT)™1);

() Q2 = s T [0 =) (e £+ (1 - PLYTA+0,(NM) > +(NT) > +(MT) > +(NMT)~

(iii) Q3 = NMT1 Zi,j,t Vitlij. + Op(T™2 + (NMT)™1);

(1) Q1= xapmr 2 s Vit (1= p) Wiz + (1 — pL)T] + Op(NM) ™2 + T2 + (NMT)™b);

(v) Qs = warrs 2oi g Vijt(1 = pLYjt + Op(N 72 + (NMT)™1);

(vi) Qs = ﬁm > i Vigt(L = pL)(@jt +Tit) + Op(N~2 + M~2 + (NMT)~);

(vii) Q7 = warzy 2o gt Vigt (1= p)Wij. + (1 — pL) (Tt + Tit)] + Op(N 72+ M2 + T2 + (NMT) ™).

Lemma B.3 Let Q,, be as defined in Lemma B.2. Suppose the conditions in Theorem 4.1 hold.
(i) If Model 2 is the true model, Qs — Q2 = 375 i Vig i + 0,(T™1);
(ii) If Model 3 is the true model, Q4 — Q3 = WTI D Vigt(L— pL)u.¢ + op((NM)™h);
(i) If Model 3 is the true model, Q7 — Q3 = WT] Zw,t vijt(1 — pL) (W jt 4+ Wit) + 0p (N1 + M71);
(iv) If Model / is the true model, Q7 — Q4 = WH > i Vigt(L = pL) (Wejt + Wir) + op(N~1 4+ M~1);
(v) If Model 5 is the true model, Qs — Q5 = WTI >igi Vigt(L— pL)Wie + 0,(M~1);
(vi) If Model 5 is the true model, Q7 — Q5 = NJ\14T1 >oige Vigt (L= p)Wij. + (1 — pL); 4] +o0,(T~ '+ M~1);
(vit) If Model 6 is the true model, Q7 — Qg = W% Zi’m Vit + 0p(T71).

b);



Lemma B.4 Let L, = NMT >
in Theorem 4.1 hold. Then

(i) L1 = O ((NMT)_ )i

(it) Ly = wrr Si 5 {(1 = p)° (W, +05) + [(1 — pL).4]"} + Op(NMT) ™! + (NM) ™ + (NT)~*
(MT)™?);

ilZiem(ZiZm) ™ LZ! U2 form =1,2,...,7. Suppose that the conditions

(iii) Ly = Ucto S +O( + (NMT)~1y;
(iv) Lo = wp X5 (1= p)" 05 +[(1 - ’ LY0.4)*} + Op(NM) 7 + T2 + (NMT)™1);
(v) Ly = MTIZ (1= pL)uj0)? +Op( +(NMT)~1);

(v) Lo = il Zi,j,t{[upr)m.tm[(1—meFHop(N*uM*Q+<NMT>*1>;
(vid) Ly = see 5, {1 = )27 41— pLYT o +{(L — LY} +Op (N2 4 M2 T2 (NMT) ),

Lemma B.5 Let L, be as defined in Lemma B.4. Suppose that the conditions in Theorem 4.1 hold.
(i) If Model 2 is the true model, Ly — Ly = (1]\”6[) Z” L+ op(T OF
(i) If Model 3 is the true model, Ly — L3 = T% >l pL)u..t] + op((NM)_l);
(ii1) If Model 3 is the true model, Ly—Lsz = wypr > 5. 11(1 = pL)T.:)*+](1 — pL)Ti.e)* 0, (N 1M 1);
() If Model 4 is the true model, Ly— Ly = NA}[TI >l = pL)T i) +[(1 — pLYTs.1)* o, (N~ 4+ M~1);
(v) If Model 5 is the true model, Lg — L5 = NT1 Dol = pLYu;4)% + op(M~1);
(vi) If Model 5 is the true model, Ly — Ly = NMTl Zi’j7t{(1 —p)?uy +[(1 - pL)ﬂi,t]Q}Jrop(T*l + MLy
(vii) If Model 6 is the true model, Ly — Lg = (11\7]\’)/[)2 3Ty A+ op(T7H).

Proof of Theorem 4.1. For notational simplicity, we assume that p = 1. Let CV,;. ,,, demote CV* (m) when

Model m* is the true model. Noting that (yije—pyije—1)— (G5 — D90 0-1) = Wige—pyize—)— @ —piily)

+(p-p) (gjgﬁ)_l — ¥it—1), we can make the following decomposition

X 1 . 2
C’va*,m = NMT, Z |:(yijt - pyiji*l) (yfjt) - pyz(j t) 1>i|
1,5,t
1 m ) 12, (P =0 X (m) 2

= NMT, - Z [(yijt — PYiji-1) — (ymt ~ PYij— 1)} + WTl Z(yij.t—l = Yijit—1)

7,7t 2,7,
2(p—p) (m) __+(m) - (m)
N > Wit = pyije—1) = @iy — Py i 1) | @iy — ije—1)
1,7,
= OV )+ CVye 1 (2) + OV (3), say. (B.1)

We grove the theorem by considering all seven cases where Model m* is the true model for m* =1,2,...,7.
ase 1: Model 1 is the true Model. In this case, Models 2-7 are all over-fitted and we will show that

P(CVY,, > CVYy) — Lform=2,...,7as (N,M,T) — co. By Lemma A.7(i), we have

(Wije — PYie—1) — (G5 — Py y)
CijtomWigt = 250 m(ZonZm) " Zn U] = pCiji—t.m(Wije—1 = Zij1— 1. (Zin Zm) ' 21, U]

= Cijtm[Vijt — Zijm(Z) Zm) T 20U + prtijemWijei—1 — 2554 1.m (L Zm) 20, U], (B.2)



where Hijt,m = Cijtm — Cijt—1,m, 2ijt,m = Zijt,m — PZijt—1,m- By Lemma A6, max; ;¢ |%ijt,m‘ = Op(l). For
CVY,, (1) we make the following decomposition

C‘/f:m(l) = NMT Z zjtmvljt zgt m(Z/ Z ) 1Z7/71U]2

1,9,

p 2 1 2

/ / — !
NMT1 Z Hijt.m [uijt—l - Zij,t—l,m(ZmZm) ZmU]

2,7,t

2 _

+N]\5T1 Zcijt7m%ijt,m[uijt—1 - Zz/'j7t—17m(Z’:nZ’m) 1Z7/nU] [Uijt ljt m(Z/ Z ) 1Z’:nU]

1,9,t

= Cvlfm(la 1) + C‘/lfm(]-a 2) + Cvlfm(la 3); say.

Following the study of C'Vy1 in the proof of Theorem 3.1, we can show CVi*i(1,1) = w377 Dt vi +
Op((NMT)_l). We shall study

1 —_— — p—
®5(1,1) = Z{(l—pP (u +u )—i—v "+ — 2035[(1 — p) (ui..—i—u.j_)—i-q;__t]}+0p(771NMT)
NMT; &
1 _
= Z 2] Tl ngt + 0p(MNmT)s
J t
240, (1) - . ~ -
®12(1,2) = WpT(l Z(d2 + i) [vige — Zij1,0(Z522) 1 Z5U7°
=
2+o0 B
- N]\;T ;nlNMT Vijt — ijt,Q(ZéZQ) LziU)? + op(M N )
2N mT 2
NMT,; ;tth + op(Mnnr), an
12(L3) = O,(VMT)™),

where 7y yar = (NM) ™ 4+ (NT) ™'+ (MT) ™", and we use the fact 7;.. = ﬁ Zj\il S (Ui — puiji1) =

(1= p)Ti.. + Op((MT)~1) and that T.;. = 5= S0 S0, (wije — puija—1) = (1 — p)ij. + Op(NT)~1). It
follows that

(NMANT AMT) [CfoQ(l, 1) —-Cvi(1, 1)]

_ 2 NmT 72 o 1 o
= (NM/\NT/\MT) WT& z]t NZ —M;U.j._ﬁzv..t +Op(l)

@7,
L qu(202 — 51y + (255 — Toy) + ¢3(25% — Tog),

where ¢’s are defined as in the proof of Theorem 3.1. In addition, we can show that CVy,, (1,1) —

CV{jl(l, )= Op (mnwmr) forl =2,3, CVl*,m(Q)—Cijl(Q) =(p- P)2 Op (M ymT) > and CV1*,m(3)_CV1f1(3) =
(p— p) Op (M nasr) - Consequently, we have

(NM ANT AMT)(CVY'y — CVi') B q1(252 —521) + 42(257 — T2y) + q3(252 — Tog).-



Similarly, we can show that

1 1 _
D15(L1) = gy 2ol =) W 201 )Ty ] 4 0 (T7Y) = 5 DT +0p(T ),
271 _
®13(1,2) = NMTIZU%HF%(T b,
1,7,t
@1,3(1,3) = Op((NMT)il)a

CVis(1,1) = OV 1(1 1) =0, (T7") for I = 2,3, CV*3(2) — CV4(2) = (p—p)° Op (T71), and CVy'5(3) —
CV1(3) = (p— p) Op (T™1) , where we use the fact T;;. = T% S (uije — puigi1) = (1= p)Tj. + O, (T71).
Then we have

Ty (CVys — CVYy) = NMTZW NMZ Fo0,(1) %252 —52,.

By the same token, we can show that

* * 1 —2 1 —2
(NMAT)(CViy = CViy) = (NMAT) S (T + (NM) NMT Z MZ —?Z
+op (1)
—>q4(2a -7 )+QQ(2 —72,),
N(Cvl*,s - CVf:l) = NMT Z Vijt — MT1 Zﬁ?jt 2 2512} *512,67
7,t
1
NAM)(CVi, —CV¥,) = (NAM)S (NP4 M~ 72,
( )( 1,6 1,1) ( ) ( + )NMT zj: it MTl Jz;v-jt NTl Zvlt
+o,(1)
L q6(28% — %) + q7(252 —F25),
and
* * 1 —2
(NAMAT)(CVY 7 —CVYy) = (NAMAT) (N '+ M+ 17 )NMT EJ: - NM;%

1
__NT1 - vl P MT Z + op
R q8(26v - Ev4) + Q9(2612) - 605) + Q10(2612) - 512)6)
It follows that P(CVy,, > CVy")) — 1 for m = 2,3,...7.
Case 2: Model 2 is the true model. In this case, Model 1, 3 and 5 are under-fitted and Model 4, 6 and 7
are over-fitted. We will show that P(CV5,, > CV5y) — 1 for m = 1,3,4,5,6,7.
First, we consider the under-fitted case. We will only show that P(CV5; > CV5,) — 1 as the proof for
the m = 3,5 case follows similar arguments. By Lemma A.7(i), we have
@5 =P 1) = ciealuie + i+, + A — 2 (X X) XU
fpcij7t_171[uij7t_1 + o; + ’)/j + >\t—1 - Ith 1(X/X)71X/U(2)}
= cipalvige + (1= p)(ai +7;) + (1 = pL)A\ — &5, (X' X) ' X' U]
+pstijealuije—r +oi + v+ N1 — g, (X'X)T x'U®),

(yijt - Pyz‘j,t—l)



where U = U 4 Dymy. We make the following decomposition for CVy (1)

C‘/Qfl(:” = NMTl chjt 1 vljt + (1 - p)(al + v]) (1 - pL>>‘ ’L]t(X X) IX/U(Q)]Q
.95t
2
—1yr77(2)12

> a1 + o+ Mo —afy,  (X'X)TIXU)

NMT1 !

+NMT Zcmt 1%jt, 1[1}1]75 + (1 )(al + rY]) + (1 - pL)At - zgt(X X) 1XIU(2)]

4,95t

X[wije—1 +ai +9; + M1 — fflij,t,l(X'X)_lX/U(z)]
= C‘/ﬁil(l?l) +C‘/Y2T1(1,2)+C‘/2>’:1(1,3), say.

By Assumptions A.5 and A.7, we can show

CVQfl(la 1) = NMT Z z]t NMT Z Olz +'Y]) + (1 - pL))\ z]t(X X) IXIDQTFQ]Q

7,7,t
+0p(1)

P -2 *
— 0, a1

Noting that max; ;s |5ijt,1| = 0p(1), we can readily show that CV5'; (1,1) = 0,(1) for I = 2,3. Then C'V5' (1) 2
T2+ %3 1. In addition, using the fact that p —p = 0p(1) and following the analysis of CV3 1, we can readily
show that CV5(l) = 0,(1) for I = 2,3. Consequently, we have shown that CV', =77 + @5, + 0,(1). For
CV5'y, it is easy to show C'V5, = T2 + 0p(1). It follows that CVs'y — CVy'y — 931 > 0. Analogously, we can
show that

CV;m - CVQfQ - @;)m > 0 for m = 3, 5.

Now, we consider the over-fitted case. We focus on showing that P(CV5, > CV5,) — 1 as the other
over-fitted cases are similar. By (B.1) and applying similar arguments as used in the analysis of CVi'y—=CVy'y,
we will show that T3 [CV5", (1) — CVy'y(1)] — 20, =72, and T1[CVy (1) — OV (1)] = 0,(1) for I = 2,3. Noting
that when Model 2 is the true model and Model m = 2,4,6,7 are used, we have

~(m —1 —1
Vit — 0o’ = CijemlYige — Zijtan (ZinZin) " ZinY) = Cijeamlije — Zigtan (ZinZm) - ZiU)s

where we use the fact that x;ﬁﬂ tait7y,+ M= mt mbm and Y = Zs0, + U = Z,,0,, + U when Model

2 is the true model and Model m is just- or over-fitted. In particular, when Model m is over-fitted, some
elerﬁents in 0,, corresponding to the redundant columns in Z,, have true value zero. Then for m = 2 4,6,7
we have

(Wije — pYisi—1) — (G — pi )

Cijtom Wist = 240 m (Zrn Zm) ™ Za U] = pCija—1mltigi—1 = Zij 1 1.m(ZmZm) " Z),U]

= CijtmlVijt — Zijtm (Zon Zm) " Z0 UL + potijemlttige—1 — 25501 m(Zin Zm) " Z3,U], (B.3)
and
C‘/Qfm(l) = NMT Z ’L]t m Uijt zgtm(Z/ Z ) IZ;nU}
7,7,t
p2 2 1 2
T T Y e mltigeor = 21 (ZiZn) " 2, U]
1,5,t

2p —
NMTl Zcijt,m%ijt,m[vijt 2]t m(Z/ Z ) 1ZT/nUHuijt*1 _Z'Ej,tfl,m(Z:an) 1Z717LU]

4,35t

= C‘/me(la 1) + C‘/Qfm(la 2) + CVQfm(l’ 3)a say.



By Lemmas A.4(i) and (iii) A.6(ii), B.3(i) and B.5(i), we have

2 (1=p)’Ti 20 =p)T .
NMT1 Z Ve + TNM Usj. — NAL Z.Zjvijimj'

,J,t ,J

Ti[CV34(1,1) = CVy5(1,1)]

"'Op(l)

2T1 _
= NMT Z Z]t Ul2j+017(1)

1,5,t ]

it 262 — 52y,

where we use the fact T;;. = T% Z;";Q(uijt — puiji—1) = (1 = p)Wij. + Op(T71). In addition, using the fact
that max; j; |5;t,4] = 0p(1) and that p— p = 0,(1), we can also show that CV5",(1,1) — CV5'5(1,1) = 0, (T1)
and CV5'y (1) — CV5'y(l) for I = 2,3. Thus we have

T (CVyy — CV5y) 5252 — 72

Analogously, we can apply Lemmas A.4(i) and (v)-(vi), A.6(ii), B.2(ii) and (vi)-(vii) and B.4(ii) and (vi)-(vii)
and show that

. . B 1 1 1 o
(N/\M)(C‘/Q,f) _C‘/Q,Q) - (N/\M) (N + M) NMT; igt MT jztv-jt Tzvlt—'_op
L q6(25% — %) + ¢7(252 — 525),
and
. . 1 1 1 1 o
(NAMAT)(CV57 = CViy) = (NAMAT)S (5 + 57+ 7 NMT; P — W;”w

1
~~7 ;@?t MT Zv +0,(1

5 q3(26% — o) + 49(20 — Tag) + 010(25% — Tg)-

Consequently we have P(CV5',, > CV5y) — 1 as (N, M,T) — oo for m = 1,3,4,5,6,7.

Cages 3-6: Model 3, 4, 5, or 6 is the true model. The proof is analogous to that of Case 2 and thus
omitted.

Case 7: Model 7 is the true model. In this case, Models 1-6 are all under-fitted. Noting that v, fg]g?) =
Cijen[Wije +vij + Qi + Gy + T8 — 241 (20, Zm) "1 2, Y], we have

(Yijt — PYiji—1) — (yz(jt) P?Jz(g t) 1)
= cijtmlvige + (1= p)vij + (1 — pL)(aie + o) + %508 — Zijt o (Z1n Zm) " Z,,Y ]

0%t m Wige—1 + Vij Qi1 F G — T 18— ij,tfl,m(Z:an>_IZ;nY]ﬂ



and

CVrm(1)
1 * - - —
= NMT, Z C?jt,m[vijt + (1 - P)%'j + (1 = pL)(cvie + ajt) + x;jt/B - Zz/'jt7m(Z;nZ’m) 1Z’:nY]2
4,45t
2

+N§4T1 Z 25t mlWige—1 + Vi + Qipm1 + &y — T 18— 24 1m(ZoZm) T 20, Y]

i,J,t
2p « - ~ _

VAT D Citmigtam [V (1= p)yiy + (L= pL) @i + ) + 83508 = 2o (210 Zm) ™ 2,V
1,55t

X[Wije—1 47+ Qi1 F QG — T B Zz{j,t—l,m(Z;an)ilz;nY]
= COV7,(L1)+CV7,,(1,2) + CV5,,(1,3), say.
Noting that Y = X 8+ Drm;+U when Model 7 is the true model and 2}, (27, Zm) ™" Z,, X 8 = d}j; . (D}, D) ™"
XD, X B+ [xije — X’Dm(D;an)*ldijt,m]/Xf)m [X'X3 — X'Dy,(D;, Dy,) "' D}, X 8] with X7, = (X'Mp, X)™*,
we can readily apply Lemma A.6 and Assumptions A.5 and A.7 to show that

1

CVim(11) = CVirlL 1) = 5 M1 = oy (1= pL) (@t +030) = Zho(ZinZon) ™ 21 D]

2,7,t
+o, (1)
Lot > Oform=1,2,..,6.

Using the fact that max; j[sji,m| = 0p(1) and that p — p = 0,(1), we can also show that CV7,, (1,1) —
CVZ:(L,1) = 0p(1) and CVZ,, (1) — CV7 (1) for [ = 2,3 and m = 1,2,...,6. It follows that CV7,, — CVZ; 2
©3.m > 0and P(CVZ,, > CV;) — las (N,M,T) — oo form=1,2,....6. &

C Proofs of the technical lemmas in Appendices A and B

X'X X'D
D'X DD
formula for a 2 x 2 partitioned matrix. See, e.g., Bernstein (2005, p.45). One can also verify the result by
definition.

Proof of Lemma A.l. Noting that X, Xp = , the result follows from the inversion

Iafl
/
“lg—1

that D}D; = 0, D}Dy = 0, and DDy = 0 by using the property that (4; ® Ay ® A3)' (By ® Ba ® Bs)
= A By ® A, Ay ® AL B3 for conformable matrices Ay, A, A3, By, Ba, and Bs. Noting that ¢y ® tar = ey,

Proof of Lemma A.2. (i) Noting that ./, = 0 for a = N, M, T, we can readily show

we have
/ _ / Ir—q
DDy = ([ INv—1 —iNM-1 ] ® LT) INM ® y
—lp_q
_ / Ir _
= [ Invi—1 —tnm—1 } INM ® Lp , =0.
—lr_1

Similarly, we can show the other claims in (i).
(ii) This follows from (i) directly.



(iii) Noting that D}D; = MT (In_1 + Jn—1), we have (D;Dy) "' = w4~ (In—1 — +Jn—1). Then

P, = D; (D)D" D)

1
- MT

®LMT> <IN—1 - %JN—1> ({ IN—1 —in-1 } ®L3\4T>

I
T
|

B
S~—
®

B
®
|5

Similarly, other parts in (iii) follow.

(iv) Noting that D}, Dry =T (Inpr—1 + Jnar—1) , we have (D) ;Dry) "

= %(INMfl—ﬁJNM,ﬁ. Then

Py = Dy, (D),;D;;) "D},
1 Inp—1 1
- T I - N (|: - N N i| / )
T( e ®LT> ( NM—1 NMJNM 1) Inp—1 INM—1 | ®tp

_ JINM Jr
= (INM NM) & T

Similarly, we have P;p = JWN ® (Iyr — {\’/[V—Lf)

- (v) Noting that D3%-D3p = M (In—1 + Jn-1) ® I, we have (D}‘%D’;T)_l = ﬁ(IN_l — %JN_l) ® Ir.
en

* * * * _1 *
Prp = DIT(DIITDIT) DIIT

® LM ®IT> <<IN—1 - %JNA) ®IT> ({ In1 =N ] ® thy ®IT)

Similarly, we can show the other two parts in (v). B

Proof of Lemma A.3. For (i), noting that (IN®%)A =(@1.., ..., an..) @ty and %V%A = Q- LNMT,
we have
1 1 Jur JINMT Jur INmT
——A'PPB = —— |A'(I — A 1 B — B
NMT ! NMT{ (v @ 377 NMT} {(N®MT) NMT
1 Jur 1 JINmT
= ——A'(I B — A B
oA N @ ) B = A N
1 o
= ¥ > G.b;. —ab.
i=1
Similarly, we can show (ii) and (iii).
For (iv), noting that (Iya ® ‘]TT)A = (@115 oy BIM -y s AN -, AN M) @ LT, We have
| Y _ 1 , Jr ,INMT Jr INMT
Nt B = [A (Iva @ ) = A | (v @ 5)B = oy B
B 1 , Jr 1 yINMT
= U © ) B = S AT

=/

1 _ = _
,J

Similarly, we can prove (v).



For (vi), noting that Py, = Iy ® (Inf — 24) ® JTT, we have

M
1 1 Jr Iy Jr Jmr
— APB = —— (A1 =) A'(I —_— I —)\B — (I B
NAT T NMT{ (NM®T) (N®MT)] [(NM@T) (N®MT)
_ L Jr Y. Jur
= o v @ ) B = AU @ 1) B

1 _ = 1 al ——
= Nz by~ b
irj i=1

Analogously, we can prove (vii) and (viii). B

Proof of Lemma A.4. (i) By Lemma A.2(ii) and Assumptions A.1(iv), A.2(i)-(iii) and A.3(i)-(iii), we

have
 X'Mp,U = e XU — o X'PiU — - X'PyU — —— X' PrU
NMT Do -~ NMT NMT 1 NMT J NIIT T
1 1 N 1 M 1 T
= XUy T T~ 3f 2T~ ) Ty + 37T

i=1 j=1 t=1

= O,(NM)™" +(MT)™" +(NT)™" + (NMT)"'/?).
(ii) Noting that D3 = Dy, by Lemma A.2(iv) and Assumptions A.1(iv), A.2(iv) and A.3(iv) we have

1 / _ 1 ! 1 I
Ty MU = gy XU = jpp X v
1

1
= — XU-— "m0, +7u
N U T N ijf i T
= O,(T '+ (NMT) /3.
(iii) By Lemma A.2(ii) and Assumptions A.1(iv), A.2(iii)-(iv) and A.3(iii)-(iv) we have

1 1 1 1

—X'Mp, U = XU - ——X'Py U — ——X'PpU

NMT = NMT NvT Y T N T
1

1 _ 1 _ _
— NMTX/U ~ N ;:puu” -7 Zt:x“tu‘.t + 27U

= O (T '+ (NM)™ + (NMT)""/?),

(iv) Noting that D5 = D r, by Lemma A.2(iv) and Assumptions A.1(iv), A.2(vi) and A.3(vi) we have

1 1 1
— X'Mp.U = ——X'U— ——X'PyU
NMT Ds NMT NvT " T
1 1
= U g 2 Tt £
Jst

= O,(NMT)"Y2 4 N71).
(v) By Lemma A.2(iv) and Assumptions A.1(iv), A.2(ii) and (v)-(vi) and A.3(iii) and (v)-(vi) we have

1 1 1 1

—— X'M - — XU-——X'PU - ——X'P

NMT U X U v PV = X Pt
1 1

- 1 _ 1 o .
— WX/U “NT ;.’Ei.tui.t + T ;:Eutu“t ~UuT jztx_jtu_jt + 7

= O,(NMT)™Y2 4 M1+ N7Y).



(vi) By Lemma A.2(iv) and Assumptions A.1(iv), A.2 and A.3 we have

1 1
. X'MpU = XU~ ——X'P ~yur XL R
Narr Mo - U warr s Frt - NMT U= X Y

1 1

= NMTY sz’t“’t+TZx = T 2 T
Jst
M 1 1
a7 Z: N2 Tt Ty Zi:l et

= O(N '+ M 4T+ (NMT) V?). B

Proof of Lemma A.5. Note that djj; (D, Dm) " dije,m denotes the {(i = 1)MT + (j — 1)M + t}th

diagonal element of Pp , for m = 2,...,7. The form of Pp,_, is given in Lemma A.2 (note that Pp, = Pp,,
and Pp, = Pp,,), from which the results in (i)-(vi) follow immediately. W

Proof of Lemma A.6. (i) Noting that Z,, = (X, D,,), we can apply Lemma A.1 to obtain

Nijtm

X7 ~ X} X'Dy (D), Dyy)7t
= ) 7de m Dom Drm o
(e e )<<D;an>1D;nXXz)m (Dl D)+ (Dl Do) D, XXfy XD (Dl D)

m
Tijt
X 4
dijt,m

= d{th m(D;an)ildijt,m + [‘Tijt - X/Dm(D;an)ildijt,m]/Xj*Dm [xijt - X/Dm(D;an)ildijt,m}
= dy +h!

ijt,m>

where X}, = (X'Mp,, X)™".
(ii) Note that D,, (D!, D,,)"* D!, is a projection matrix with spectral norm 1 and d,,, = it (D Do) ™
Xd;jt,m is a constant which is o (1) for each m by Lemma A.5

A7 X DD D) M jenl|” = s (Din D) DX X' DDl Do) i
< A (D} D) 2D, X X' Dy (D), D))
< ch\/[Ttr(XXD (D;,Dy,)""Dy,)

1 _
< g 1X'X) = 0y (d)

By the Cauchy-Schwarz inequality and Assumption A.1(ii) and (v),

1 _ 2
H}ffhmtm < 2cmNMT{ max||$m|\ +NMT max”dmm(D;an) lD;nXH

NMT i
= Op(<NMT)_1/2 + dm) =0, (1),
where ¢, NMT = P‘min(NMTX Mp, X)]7' = 0, (1) by Assumption A.1(v).

max; j ¢t Rijt,m
= 1-max; ¢ hije,m

Rijt,m

y— , the result follows from part

(ili) Noting that max; ;¢ |cije1 — 1| = max; )1
(ii).

(iv) This follows from the definition of ¢;j;,; and part (ii).

(v) This follows from the definition of ¢;;;1 and part (ii). W

10



Proof of Lemma A.7. (i) For the model yijr = x};,8 + djj; ,,Tm + Uijt = 2j mOm + wije, the OLS

and leave-one-out OLS estimators of 0, = (,7,)" are given by 0, = (Z,Zm) " ZL,Y and B;jim =
(Z! Zm — zijtmz;jt)m)_l (Z,,Y — zijt,mYijt) , respectively. By the updated formula for OLS estimation(e.g.
Greene (2008, p.964)), we have 0;j¢ p, — 0., = _17hfil,jt,m (Z;an)fl Zijt,m€ijt,m- 1t follows that
~ / A 1 ’ —1
Yijt — Yijtom = Yijt = Zije.m O — 1T ho (ZinZm)  Zijt,m€ijt,m
— ligt,m
eisim + hijt,m _ Cijtm

€ijt,m = ————.
1—hijtm 1 —hije,m

(ii) When the true model is given by Y = X8+ D*n* +U but with Z,,, = (X, D,,) used in the regression,
we have

/ / * !
b = (ZZu) 2oy = (22 [ XX A " Ys izt AV
p.x D.D* )\ 7 DU

= [+11, say.

By using the inverse formula in Lemma A.1, we can readily show that

Xf)m, 7XBmX/D77l(D;nD7n)71
(D}, D) DL XX (D D)t + (D, D) " Dl X X3 X' Dy (Dl D)™

L[ X' XB+ XD
D! XB+ D', D*r*

_ B+ (X'Mp, X)"\X'Mp, D*r*
(D}, D) "D}y D*1* — (Dl D) "' DL X X}, X'Mp, D*n* )’

and similarly
17— (X/MDMX)ilX/MDpU
-\ (D,,D,,)"'D., U — (D;an)_lD;nXX}SmX’MDmU ’

where X}, = (X'Mp,, X)~". It follows that

eijt,m = yijt - ;jt mé = ( z]tﬁ + d:(j tTr + ul]t> ( zgtﬂ d{th m) (I + II)
= (2B + df; 7" + wijt) — 235, (B + Xp, X' Mp,, D*n* + X}, X'Mp,U)
d{th m[(D;nD ) lD;nD* - (D;an)ilD;nXXBmX/MDmD*W*
+ (D, D)~ ' D, U — (D,,,Dy,) ' D}, XX}, X'Mp, U]
= Aijt.m + Bijt.m + Cijt,m-
(iii) Noting that Aijtm, Bijt,m, and Cyjt . are typical elements of Mp, U, (I — Py, x)Mp,, D*1*, and
—Mp, XX}, X'Mp, U respectively, we have

Z A = UMpU, Y B}, =n"D"Mp, (I - Puy,, x)Mp, D",
1,5t i,5,t
> Clim = U'Mp, XXp X'Mp, U, > AijtmBijim =UMp, (I = Py, x)Mp, D*",
i,5,t 1,5t
> AijtmCijim = —U'Mp,XXp X'Mp, U, and > BijsmCijtm =0,
i,5,t i,,¢

where we also use the fact that >, wijedijy ., = U'Diny 325 54 dijtomdije e = Dy Dins 32554 Tigtm @iy m
= X'Dy, and Mp,, X(I — Py, x) =0. R
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Proof of Lemma A 8. We ﬁrst determine the probability order of E,, 1 = 7 Dot it.mCiit.m and

jt,m
then that of E,, 2 = NMT > it wt mAijt,mCijt,m- By Lemmas A.6(iii) and A.7(iii),

COmMNMT
Eml_ Z(/vnMT ZC”tm

2,7,t

CQmNMTNMTU Mp, XX}, X'Mp, U,

where copnypT = max; j ¢ c?jt)m =140, (1) by Lemma A.6(iii). One can readily show that by Assumptions
A.1(iv)-(v) and Lemma A 4,

Ein = O,((NMT)™),

Es. O,(NMT)™" + (NM) > + (MT)™* + (NT)™?),
Es1 = O ((NMT) ' +T7?)

Ey1 = O,(NMT)™'+T72 4+ (NM)™?),

Es, O,(NMT)™" + N72),

Es1 = O,(NMT)™' +N724 M),

Erp = O,(NMT) '+ N 24+ M 24772

For Ep, 2 = W Do it C?jt’mAijthijt’m, we make the following decomposition

Em,2 = NMT Z Aljt mCZ]t mt w7 NMT Z hljt m 'th mCzjt m
,5,¢ i,7,t
1
+m (ijt,m — 1 —=2hj0,m)Aijt,mCijtm
1,55t

Emz21+2Ey22+ Ep 23, say.
By Lemma A.7(iii), Ep 01 = *m Dot C’fjt)m whose probability order is given above. By Lemma A.6(i),

A,

Empo = NMT Z R ey NMT Z hiitmAijtmCijtom = Em 2,24 + Em 2,26, say.

1,5,t i,9,t
By the Cauchy-Schwarz inequality we have

1/2 1/2

_ 1 1
|Em7272a| S dm m Z A?jt,m m Z Ci?jt,’m = Op (ngn + 5NMT,m) )

1,55t i,5,t

where N vTm = FpT MT > it wt m has the same probability order as E,, 1 studied above, the exact values

of d,,,’s are given in Lemma A.5, and we use the fact that 77 >, i ; A%, ., = Op (1) by Lemma A.10 below.

i,5,t “Tigt,m
For E,, 2,25, we have
‘EM,2,2b| < I?]ai( hz]f mNMT Z |A23t m z]f m|
1,95t
1/2 1/2
= OP (Jm + (NMT)il/Q) NMT Z ijt,m NMT Z ijt,m
4,55t 1,5t

= Op (&7271 + (NMT)il) + Op (5NMT,m> = Op ((En + 5NMT,m) .

12



By Lemma A.6

|Em2sl < NMT § | Cijtm — 1 — 2hijt,m)Aijt,mCijt,m}
S [3+OP (1)] ma‘Xhzjt mNMT §|A1Jtm ijt, m‘
< [3+Op (1)] Op (an+(NMT)7 ) NMTZ|Azﬁm ijt, m‘

2,5,
= 0 (Em,2,2) = 0p (ngn + 5NMT,m) .

Summarizing the above results yields the claims in the lemma. B
Proof of Lemma A.9. The key observation is that when Model m is just- or over—ﬁtted, Mp, D*=0
and d.., . (D! D,,) D! D*n* = d.., . (D! D) *D. Dy, = d. = d¥l, ™ where the coeflicients

ijt,m ijt,m m ijt, m™ ijt,m
in 7, corresponding to the redundant dummies in Model m are zero. As a rebult Biji,m = 0 whenever Model

m is just- or over-fitted for m € {2,3,...,7}. W

Proof of Lemma A.10. (i) For H;, we make the following decomposition:

Hi = NMTZ ije1 Tt NMTZ ijt,1 1)Az2jt,1 = Hy 1 + Hip2, say.

2,J,t 1,5t

Note that Hy 1 = NMT Z” tumt For Hj o, we have

thjt 1 — it,1
H = — 1) u2 w 2
o = T )= N T g
3hl o1 — 212,
= NMT Z hz]t luz]t + NMT Z J " i 1)j2t’1 hijt,1u§jt = H1’2’1 + I’ILQQ7 say.
)J t Zj .

For H; 21, we have that by Assumption A.1(iii) and (v) and the Markov inequality,

H1’271 = NMT Zhlﬂ 150 = NMT Z ljt X X) ngtu?]t
,J,t 1,55t
< XX 5 3 il e = Op(VMT) ),
4,5t

This, in conjunction with Lemma A.6(iv), implies that

Shijt,l — Qh?jt,l
(1= hijea)?

H122<max
7,7,t

NMT D hijiauly, = 0p()O,(NMT) ™) = 0,(NMT) ™).

1,55t

Thus we have shown that Hy = 77 D Ui + Op(NMT) ™).
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(ii) For Hy, we make the following decomposition

= NMT > (14 2hije2) Ao + 577 NMT D (cfjea = 1= 2hije2) Afjes

1,5t 2,7,

= (A+2(NM) ' +2MT) 4 2(NT) !

1 2
)NMT Z Aijt,Q

©,7,t
2 -1 -1
g O [haie = (VM) = () = (NT) '] A2,
©,7,t
1
+NMT (szjt,2 -1- 2hijt>2) A?jt,Q
’j’t

= Hy1 + Hyo+ Hy 3, say.
By Lemmas A.2(ii) and A.3(i)-(iii) and Assumptions A.1(iv) and A.2(i)-(iii),

2 2 2
2 (+NM+MT+NT)NMTU p,U
2 2 2
- (1+NM+W+W)NMTU (Ivar = Pr =Py = Pr)U
N M T
2 2 2 ) )
= 1l+—+—+— [75—— =2 _ = —2 —2
U+ 527+ 3 © w7 NMT; it g i M;% T;u».ﬁr?m

2 2 2 1 o 1 1 &
= Uty a7 v NMT Z““t N Zlﬂg TP R DI
+0,(NM)™> + (MT)™? (NT) + (NMT)™h).
For H, 5, we apply the results of Lemmas A.5(i) and A.6(i) and Assumption A.1(iii) and (v),

2 —1 —1 -1
Hyp = mZ[hm‘m—(NM) - (MT) " —(NT) }Agjt,Z

= NMT > bl Al e+ Op(NMT) ™) < 2 (X' Mp, X) 7!, Ho2 + O,(NMT)™),

1,5,t

2
Tijt — X/DQ (D/2D2)_1 dijt,2H (Uijt — U/DQ (D/QDQ)_l dijt)g)Q. NOtng that

TIT7 1
where Ha» = mpr 2.

1

X/DQ (DIQDQ)il dijt,2 = Tz +T] +f..t — 37 and UID2 (D/QDQ)i dijt,? = ﬂz +ﬂj +ﬂ..t - 3@,

we can readily apply the Cauchy-Schwarz inequality and Assumption A.1(iii)-(iv) and show that Has =
O, (1) . It follows that H272 = O,((NMT)™1). For Hs 3, we make the following decomposition

3 — 2hy;
= 2 ijt,2 2
H2,3 - NMT zj:t zgt 2 thjt 2) Azjt 2 — NMT 1 — hijt’2> hZJt 2Aijt,2
— h thjt 2 3 h2 A2
N NMT ; ijt.2 A ”t 2T NMT Z 1 ~hijia)? - ijt,24%ijt,2

= Hj31+ Hy32, say.

For H27371, we have
H231 <maXhzjf2NMT ZAzth Op(dg)

2,7,t
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By Lemma A.6(v) and the dominated convergence theorem (DCT), Ha 32 = 0,(d3). Combining the above
results yields the conclusion in (ii).
(iii) As in the proof of (ii), we make the following decomposition

1 2 1 2
H3 = m ;(1 + thjt,3)Aijt,3 + m ;(Cijtﬁ 2hzgt S)Azgt 3
o 71 2
= (1+2T NMT; ”’53+NMT; itz — 1 )Aijt,ii
1
+m (C?jt;’) —1- 2hijt73)‘4§jt,3
1,9,t

= Hsi+ Hz2+ Hs 3, say.

By Lemma A.3(iv) and Assumptions A.1(iv) and A.2(iv),

H3, = (1+2T‘)NMTUMD3U:(1+2T‘1)ﬁU’(I—PJJ)U
= (1+27! NMT; - NlM Zﬂlzj L
= (1+27" )ﬁ ]tu”t NMZ p(T7% + (NMT) ™).
By Lemmas A.5(ii) and A.6(i),
Hso = NMTZ ijt,3 — )AZQ_]tB’ NMTZhZ]t3 z]t,3+OP((NMT)71)
1,55t 1,5t

< 2|[(X'Mp, X) M| Hao+ Op(NMT) ™),

2
xijt — X/Dg (DéD3)71 dijt,?’H (Uijt — U/Dg (DéD3)71 dijt,g)Q. Notlng that

I _ 1
where Hya = xarp Do e ’

1 1

X/Dg (DéDg)_ dijt,3 = Eij‘ — 7 and U/Dg (DéDg)_ dijt73 = ﬂij. — H,
we can readily show that Hs o = O, (1). Then Hs o = O,(NMT)™"). Following the analysis of H2 3, We can
readily show that Hy 3 = O,(T =2+ (NMT)™"). It follows that Hz = (1+ 2) w77 > it Uz, — o 2 T R
Op(T72+ (NMT)™1).

(iv) As in the proof of (ii), we make the following decomposition

He = NMT > (2R a) ALy s + NMT D (cHiea = 1= 2hijea) Al

1,5,t 1,55t

= (1427 ' +2(NM)~? NMTZ 2ot NMTZ hijea =T~ = (NM)7') A%, 4
1,5t 2,75t
1
er (ijm —-1- 2hijt,4) Azzth

7,7,t
Hyq+ Hyp+ Hyg, say.
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By Lemmas A.2(ii) and A.3(iii)-(iv) and Assumptions A.1(iv) and A.2(iii)-(iv),

— —1 _
Hyy = (142771 +2(NM) )NMTUMD4U
= (1+27 '+ 2(NM)™! )WU’(I Prj— Pr)U
1 _ 1 —_ _
= (1427 ' +2(NM)~ NMTZ 2 — Mzufj,—fzu%tmuz
i,j t

1 1y
(142771 4+ 2(NM)~ NMTZ”t NMZuij_—TZu_.t
2,7 t

1,5,¢

+O,(NM) 2 + T72 + (NMT)™Y).

Using arguments as used in the analyses of Hs 2 and Hs 3, we can readily show that Hy o = O,((NM T)fl) and
Hys=0,(NM) > +T~2+ (NMT)~'). Then (iv) follows.
(v) As in the proof of (ii), we make the following decomposition

1 1 2
Hs = soarm D (L 2hiies) Abjs + 5o (s = 1= 2hijes) As
it 4,35t
~1y 42
= (]_ + 2N~ NMT Z ijt,5 + = NMT Z ijt,5 N ) Aijt,5
©,7,t 1,5,t
1
+—NMT (¢t — 1= 2hijes) ATy s
it

= Hsi+ Hsz+ Hs 3, say.

By Lemma A.3(v) and Assumptions A.1(iv) and A.2(vi),

H = (1+2N1 M =(1+2N"! U({(I-P U
5,1 1+ )NMTU pU = (14 )NMT ( 77)
1 —2 | -2
= (1+2N! NMTZ it~ TZu,jt—i—u
1,55t J,t

1 _ _ _
= (1+2N! NMTZ 2 MTZu.jt+0p(N 2 (NMT)™.

1,5,t J,t

Using arguments as used in the analyses of Hs 2 and Ha 3, we can readily show that Hs o = Op((NMT)_l) and
Hs3=0,(N"2+ (NMT)™'). Then (v) follows.
(vi) As in the proof of (ii), we make the following decomposition

HG = (1+2N71+2M) NMTZ ”tﬁ—"_NMTZ zth_N ! Mﬁl)Afjt,G
2,7,t 2,7,t
NMT zgt 6 QhUt 6) Azgt 6
1,95t

= H671 + H672 + H673, say.
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By Lemmas A.2(ii) and A.3(v) and (vii), and Assumptions A.1(iv) and A.2(iii) and (v)-(vi),

_ -1 -
= (1+2N"'+2m)™! )WU’(I—P;‘T—PJT)U
1 _
= L+ 23 NMTZ b~ T 2 TZUMTZM
7,7,t 7,t

— (142N 420" NMTZW MlTZta?ﬁ Tzu”
Js

1,5t

+O0,(N"2 4+ M2 + (NMT)™).

Using arguments as used in the analyses of Hs 2 and Hs 3, we can readily show that Hg o = Op((NMT)_l) and
Hgs3=0,(N"2+ M2+ (NMT)™'). Then (iv) follows.
(vii) As in the proof of (ii), we make the following decomposition

Hy = (1+2N"'+42M~' 427! NMTZ ”t7+NMTZ s — NTU =M T 42,
©,7,t 2,7,t
1
T (citr —1—2hije7) A q
4,9,t

= H7i1+ H7o+ Hr3, say.

By Lemmas A.2(ii) and A.3(vi)-(vii) and Assumptions A.1(iv) and A.2(i)-(vi)

Hz,
1 —1 — /
= 2T U Mp,U
(1+2N"'+2M ™ + )NMT Dy
= (1+2N"'+2M 42T )WU’ (I — Pjp — P}, — Pip)U

= (1+2N"'+2M 4277

1 1 ) o
NMTZW NM;u?j'_ﬁzZ;u?'t MTZth+ ZUf th:u?ﬁﬂzj:u?j.

1 1 1
= oM~ 42T~ u; T T
(142N + Ty NMT; 2 NMM-U” NT”u” jtu_

+O,(N2+ M2+ T2+ (NMT)™ ).

Using arguments as used in the analyses of Hs 5 and Hs 3, we can readily show that H7 o = O,((NM T)_l) and
Hy3 = OP(N*2 +M 24T 24+ +(NMT)™1). Then (vii) follows. B

Proof of Lemma A.11. (i) We write G,,, = ﬁ Zi,j,tcgjt,mAijt,mBijt,m + W Zid?t szjt,mBijt,m
XCijt.m = 2Gm1 + 2G 2, say. For G, 1, we make futher decomposition
Gm71 NMT Z ijt, mBz]t m + = NMT Z ”t m I)AiijBijt,m = G(7n,1,1 + Gm,1,2a say.

1,5,t 1,5t

Noting that Mp,, (I — Py, x)Mp,, = I — Py, x — Pp,,, we can readily show that by Lemma A.7(iii) and
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Assumption A.4

1 * *
Gm,l,l = NMT ZAZ]t m 'th m = WU/MD"L (I - PMDmX)MDmD 7T
i,g,t
= mU’ (I—PMDmX—PDm)D*’]T*
= m Z[d?jtﬂ-* th m(Z/ L, ) IZ;nD*ﬂ-*]uijt = OP(]')'
%7,

For Gy,1,2, we have by Lemma A.6(iv)

2[1+o
|Gm,1,2| S —p Z hmt m ‘AUt m z]t m|
NMT oy
1/2 1/2
S 2 []‘ + Op(l)] I},lﬁ’i( hijt,m NMT Z ijt,m NMT Z ijt,m
1,55t 2,7,t

< Op(dy + (NMT)™2)0, (1) 0, (1) = 0, (1),

where we use the fact that 77 >, it A3jem = Op (1) and <t >it Biitm = Op (1) Thus Gy 1 = 0, (1) .
For G2, noting that Zm’t Bijt. mCijt.m = 0 by Lemma A.7(iii), we have G, 2 = m Zi,ji(cfjt,m -

1)Bijt,mCijt,m- Using arguments used in the analysis of Gy, 1,2, we can show that Gy, 2 = op,(1). This
completes the proof of the lemma.

(11) Note that Km*’m = m Zi,j,t Bzzjt,m + m Zi7j7t(C?jt,m )ijt m = Km*,m,l + Km*,m,Q, say. For
K+ m.,1, we have by Assumption A.4

Km*,m,l = W*/D*/MDM (I — PMDmX)MDmD*W*

NMT Z ijt,m

,J,t

= 'D"(I - Py, x — Pp,)D*7* 5 e -

By Lemma A.6(iii) and the DCT, K+ 2, = 0, (1). This completes the proof of the lemma. W

Proof of Lemma A.12. (i) Noting that Pp, — Pp, = Pryj — Pr — Py by Lemma A.2(ii), we have by
Lemma A.3(i), (ii), and (iv) and Assumptions A.1-A.3

1 1
WA/(MDZ_MD4>B = WA/(P[J—P[—PJ)B

- WZ%%' NZaz .—MZE L+ ab
2, (@bl

— ro 1
- NM Z A
*M Z(@v —a)(b;. —b)
= > =) B =)+ Op(MT) ™+ (NT)™) = Op(T 7).

(ii) Noting that Pp, — Pp, = Pr by Lemma A.2(ii) and the fact D3 = Dy, we have by Lemma A.3(iii)

1 _ R -/ _
WAI(MD3_MD4)B_WAIPTB_Tz(a“t_a) (bt_b) :Op((NM> 1).
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(iii) Noting that Pp,

;A/ (MD3

NMT ~ Mp;) B

(iv) Noting that Pp,
A.3(id)

LA’ (MD4

NMT — Mp,) B

(v) Noting that Pp, — Pp, = Pjr

A
NMTA (M

(vi) Noting that Pp,

by Lemma A.2(ii) and the fact that Ds

NMT
- NTZ‘L”_‘L

— Pp; = Prp + Pry+ Prr —

1
— Mp,)B = —A’P,TB—N Zazt—a) (bie — D)’

7PD3 = PI*T +P;<J +PjT — Prj by Lemma AQ(II)7

1
A (Pip + Piy+ Pip

—P))B
NMT 1)
= 1 R
NTZaztbzt+M ;a]tbjt thlatbt
_sz.. MZ@ b, +ab
i=1 j=1

1 S |
ﬁ;(a,.t—a)(b,.t—b)—km

+O,(NM)™ + (MT)"' +(NT)™)
Op(M~t 4+ N1,

— Pp, = P}y +Pf;+Pjp— Pry— Pr by Lemma A.2(ii), we have by (iii) and Lemma

1
~——=A"(Pjr + P[; + Pjp —

NMT Pry=Pr)B
NT Z CLZt b) + ﬁ (E gt — E) (l_).jt *E)I

2 T Nj _
- Z (@.—a) (b Z —b)

t=1 i=1

1 Y -
I Z(aj- —a)(b;. —b)

1 _ = 1 _ - -/
W (az + — a)(bi‘t - b) + m . (a.jt — a) (b‘jt — b)
+0, (( M) ™+ (MT)' +(NT)" ) =O0,(M~' + N71).

= D jr, we have Lemma A.3(vii)

T -_—
Z Tt — Q) —b)
it —b)' + Op((NM

Pyr by Lemma A.2(ii) and the fact that D5 = D,
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we have Lemma A.3(v)-(viii)

1 1 * * *
WAI(MD5_MD7)B = WAI(P[T+PIJ+PJT_PJT)B
_ 1 / 1 T Ty
- NT — (a’lt a)<b1t b) + NM — (al.] a’)(b” b)
1« 1 &
—= Y (@.i—a)(b.;—b ——=> (a. —a)(b.. —b)
T t=1 N i=1
1 < _
— @~y Y
j=1
e NG D Es ) 4 S (@ — ) (B — B
= NT - a;.¢ a it NM - Qjj. a ij-

+O,(NM)™ ' + (MT)™' + (NT)™ ") = Op(M~* +T71).
(vii) Noting that Pp, — Ppy = P}; + Pj; — Pyr by Lemma A.2(ii), we have Lemma A.3(v), (vi) and

(viii),

1
WA/(PFJ+R7T—PJT)B
_ 1 -

1 L , - /
= Ui izj(aij, —a)(bi;. —b)" — ¥ (@;.. — @) (bi.. — D)

1
~arr ' (Moo = Mp:) B

1 — T TV
W 2 (@;. —a)(b;. —b)

1
- ﬁ Z(aij —@)(bij. = b) + Op(MT)"' + (NT) ™) = 0,(T""). B

Proof of Lemma A.13. We have D;j; s, = Dy, (D, Do) ~Yd;ji.m which is the ((i—1)MT+ (5 —1)T +t)th
column of P,,. Then, for A = {a;;;}, we have:

E;jt,ZA = Q. +a.j~ +a.¢— 367

Ezjt)gA = ay. — T,

EgthA = @y +a.— 2a,

Dy sA = @y —a,

Egjt,GA = Q¢ T 0j¢ — Ty — G,

ﬁ;’jtﬂA = Q¢+ a-jt —+ aij- — ;.. — EAJ'. —Q..t.

Below we focus on the proof of (i) as the proofs of the other parts in the lemma are analogous.
(i) If Model 2 is the true model, we have e;;14 = A;jia + Cijra and ejjr0 = Ajji2 + Ciji 0. It follows that

2 2 2 2 2 2
€ijt,a — Cijt2 = (Aijt,4 - Aijt,Q) + (Cz'jt,4 - Cijt,Q) + Q(Aith - Aijt,Q)Cith + 245512 (Cijt,4 - Cijt,2)

1
> eijaz (1), say.
=1

. . . 4

By the triangle inequality, we have —N]%/[T Zmﬁ R4 ‘e?th — efjt,ﬂ <> —N]%/[T Zi’ji R4 leijeaz (D] =
4

Zl:l E274 (l) , Say.
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First, we study Es 4 (1). Noting that
Ajra = Ale = (Aigra — Aijeo) (Aijea + Aije

)
= — (Dijta — Dijs, 2) [2%315 (Dijt,a + Dije, 2)/ U}

= —2(Dijea — Dijs, 2) Uuijt + (Dijea — Dijq, 2) UU' (Djjia + Dije2)

we have
E2)4 (1) = NMT Z ijt,4 ’Aljt 4 A?jt 2
4,55t
< NMT Z Ryt ‘ (Dijea — Dijt,Q)l Uuije
,5,¢
+NMT Z hije.a ’ Dijjea — Dijt,2)/ UU' (Dijea + Dijt,2)} =2F,4(1,1) + Ea4(1,2).
,5,t

By the Cauchy-Schwarz inequality,
1/2 1/2

1 . _ _ 2
Er4(1,1) < NAMT Z hiita NMT Z ijt,4 H (Dijt,4 - Dijt,2) Uugje

,5,t 1,55t

Noting that z;j: — X' Dijt.a = @it — X' Da(DyDy) " d;iji 4 denotes the residual in the OLS regression of z;;
on d;jt.4, we have

1 ) 1 ] ) ]
A S = Y (e X D) X, a1~ X' D)
i,7,t 1,7,t
< || D4||sp NMT Z Lijt — X’ Dzyt 4) (l'zjt X’ ngt 4)
2,7,t

1
< XDl 57 o Il = Op(VMT) ),

2,55t
* m/ * ! 7
XD Tijt + 2Dijt74XXD4X Dt 4, we have

‘ 2

Noting that h;j; 4 < 2%t

— /
NMT Z hijta H Dijia— Diji2) Uugjy

,5,¢

2 ) i o .
= NMT ; w15t XDy it H (Dijt.a — Dije 2) Uuz-th
2
* T —_ _ ’ B
+NMT ZI‘/DUt 2 XXD, X Dijta H (Dijt,4 - Dijt,2) Uuiji|| =1+ 11, say,
i.J,
where
2
B = I
I < || Ds sp NMTZH%JtH u”t [(Dith_Dith) U}
7,7,
2 ) 3 _ ~ N
= %5, se NMT Z el uzzjt (Tij. — Ti.. —T.5. +7)
4,55t

IN

XD, I, NMTZ”:EUtH (@), + T2 +T2.) + Op(NMT)~?)

1,5,¢

= Op((NMT)il)a

21



since we can show w7z >, [EP & uz; (U3, +77. +7%.) = Oy(1) by Assumption A.1(iii) and the Cauchy-
Schwarz and Jensen inequalities. Similarly

2
17

IN

H D4pr NMTZuUtHDJt‘lXH {( ijt, 4 — Dijt,Q)/U:|

1,55t

sp NMT Zu”t ||,’13” +T t_2$H (ulj Ui — U.j. + U

1,55t

= H D4
= Op(NMT)™),

Where we use the fact [|Z;. +T +—2T|)° < 3(”@] ||2 + Izl + 1221%), @i — .. — 0 +a)2 < 4T +

4T +u %), and that w7 >, 5, zat||xwt||2 1 = Op(1) for o)y =Tij., Tp and T and um =, u;
E% and u® by Assumption A.1(iii). Consequently, we have Es 4 (1,1) = O,(NMT)™ ) =0, (T71).

For F5 4 (1,2) we have

-3

1/2 1/2
B4 (1,2) Z NMT > Hijea [(Dista = Diji2) UU" (Dijia +D”t’2)}2 |
gt 1,5t
where
NMT Z hijea [ ijt.a = Diji2) UU" (Dijea + Dijt,z)} ’
4,5t
_ _ 2
< NMT ;mthD4$mt [(Dith — Dij, 2) UU' (Dijta +Dz‘jt,2)]
NMT Z Dl 4 X X5, X Dijia [(Dm4 — Dijen) UU' (Dyjoa + Dijt,g)} S +1V.
0,45t
Note that
11 < X5, g o ol [(Puses = Dina) UV (Bisna + D)

1,55t
= x5, NMTZH%tH (@, = Tio. =W +70) (Wi + Wi + Wy + 20 — 50)]°

2,7,t

= O,(NMT)™Y),

since we can show ——— NMT Dot [EPA & (w; +w;. +u;. +a’,) = Op(1) by Assumption A.1(iii). Similarly, we can

show that IV = O, (d4)O,((NMT)~1). It follows that Ea4(1,2) = O,(NMT)~Y/2) xO,(dy/*(NMT)~1/?) =
op (T7') . In sum, we have shown that Ey 4 (1) =0, (T71).
Next, we study Fs 4 (2). Noting that

Cijta — Cijro = (Dwt 4X )X}‘34X’MD4U (D/Jt X — ;Jt) X5, X' Mp,U)

= Dy~ Digea) XX, X' MU + (DX — a1} (X, — X)X’ M, U
( ijt, 2X z]t)XDzX/ (MD4 MD?) U7
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we have

Es4(2)

IN

NMT Z R4 |(Cijia — Cije2) (Cijea + Cije2)|
4,75t

—1 * N N / * 1

NMT > i |(Dijea = Dijea) XX, X' Mp,U (Cijia+ Cijr o)

1,9,

NMT Z hz]t 4 zjt 2X ’L]t)(Xl*)4 - XBQ)XIMDALU (Cijt14 + Cijtﬂ)’

2,7,t

NMT Z hzgt 4 ljt 2X Ut)XDgX/ (MD4 - MD2) U (Cijt;‘l + Ciﬁ@)}

1,5t

E2,4 (2, 1) + E2)4 (2, 2) —+ E274 (2, 3) , sa

It suffices to consider the probability bound for each term. By the Cauchy-Schwarz inequality

Ey4(2,1) <

1/2

NMT Z hijea(Dije.a — Dije2) X X1, X'(Dijr.a — Dijt.2)

,5,t
1/2

NMT Z hz]t 4 Cz’jt,4 + Cijt,g)z U/MD4XXB4X/MD4U

1,55t

Noting that E;jt 4A = 0. + 0.4 — 2a and E;jt,QA = @;.. +a.;. +a. — 3a, respectively, and using hj;, , <
2|X5,1I,, (lzigell® + [1D5;1,4X?), we have

NMT Z hijea(Dijea — Dije2) X X, X' (Dije.a — Dije2)

4,5t

162, g 32 { el + 19050 X1} (Dijes = Disua) XX (Dises — Disez)

,J,t

= O,(NMT)~?),

2 2 2 = _ 12\ 1= _ — —2
X515 w377 2 (sl + 17 + 3. = 221° } 75 = 7. = 5. + 3]
2,7,t

1 * 2 *
7T D Mt (Cijea + Cige2)” U'Mp, X X, X' Mp,U

<
<
and
< [[Xp,
< [1x5.]

4,45t
2 / * /
o NMTZ{II%II 11Dl aX|P } (Ciges + Cige2)® U'Mp, X X X' Mp,U
1,55t
2 — — —12 2
XM, U e S sl + i + % — 22} (Crges + Cie2)
1,3,

= O, (T*+(NM)~

where we use the fact ||Xf)4 ||
by Lemma A.4(iii),

NMT Z

= Op(NMT)™)

2+ (NMT)7') 0, (1),

. i | X' Mp,U|| = Op(T~1 + (NM)~! + (NMT)~%/2)

|5%t|| (Cijea+ Ciji2)® = 0,(1), and we can readily show NAIT Lot
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||EZ] +ZT..4 — QTHQ (Cz'jt,4 + Cijt,g)z = Op(l) Then E274 (2, 1) = 0p (Tﬁl) . In addition, we have

Ey4(2,2) = NMT thjt 4 ’ Tijt — X' Diju, 2) (X’ MD4X)71 (X' (Mp, — Mp,) X] (X/JMD4X)71
1,95t
xX'Mp,U (Ciji.a+ Cije2)|
1
< !
- ‘ <NMTX MD“X) ' Nz (Mps = Mp:) XH HNMTX MMUH
Sp
NMTthMH wijt = X'Dije2) (Cijea + Cijed)
1,55t

= 0,(1)0, (T O (T + (NM)™! + (NMT)"?)o, (1) = 0, (T"),

and
1 _
Era(23) = §p > Hijia ’(%’jt — X'Diji2) X, X' (Mp, = Mp,) U (Cijea + Cijt,Q)’
—
< | (etnn) | [t -]

NMT Z ijt,4 H Tijt — X' Dm 2) (Cijta+ Cijt,Q)H

1,35t

= 0,(1)0, (T o0,(1) =0, (T,

as we can readily show that = D it Mijea || (zijt — X'Diji2) (Cijra + Cijt’Q)H = 0, (1). Consequently,
E274 (2) =0p (Tﬁl) .
Next, we study Fs 4 (3) . Noting that (Aijt.a — Aiji2)Cijta = — (Dz.th Diji. 2) UCj1.4,

E2,4 (3) = NMT Z ijt,4 ’ Dijt,4 z]t 2) UC’L]t 4
4,55t
1/2 1/2
1 . ) 12
= NMT Z hijta NMT Z hi5e.4C, jf 4 [(Dijt,4 — Diji2) U}
i,7,t i,7,t

= Op((NMT)"Y2)0,(T7? + (NMT)"/?) = 0, (T7),

as we can show that

2

NMT thgt 4Cth4 [( ijt, 4 — Dijt,Q)lU}

1,5,t

< NMT X;xZJtXD4z1JtCz]t4 [( ijt, 4 — Dijt,Q)/U:|2
i,J,
+NMT ZD'/th WX X5, X Dljt4cjt4 [( ijtd — Dijm)lUr
,J,t
< X5, NMTZtHx”t” 2 [(Digea — Dige) U]
4],
|| D4||sp NMTZI‘/HD””’LXH Cljt4|:( ijt, 4 — Dijtg)/U]Q
],

= O, ((NMT)™").
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Analogously, we can show that E 4 (4) = 0, (T~') . Consequently, we have Ey 4 =0, (T7).

(ii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that
D;j,3A="10;;. —aand Dy, 4A =a;j. + . — 20.

(iii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact
that Dyj, 7 A = Gy +@jy + Qg — Ty — @g. — @y and Dyjy 3 A = a5 — @

(iv) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that
Djy7A=Tpp +Tjy +Tyj. — Ty — Ao — Ty and Dyjy 4 A = Tij. + Ty — 20

(v) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that
Djy6A=Tjs +Tj —ay —aand Dy ;A =Ty — .

(vi) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that
— _ _ _ _ _ _ — _ _
Dijt,7A =a;.+ + Q.j¢ + Ajj. — Aj.. — Aoj. — Qg and Dijt,5A =a.jt — a.

(vii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact
that Dy, 7 A = Gpp +@jy + @jj. — Gy — @g. — Gog and Dyjy gA =g +@jy — Gy —a. B

Proof of Lemma A.14. (i) Recall that D;j¢,m = Dy (Dl Din) ' dijem and X5, = (X'Mp,, X) ™" for
m = 2,...,7. Noting that

* * B * B B / * B
ijta —Rijre = (zije — X/Dijt74)/XD4 (zijt — X'Dijia) — (zije — X'Dije2) Xp, (zije — X' Diji2)
= 23;(Xp, — Xp,)xije + (Dijta — Diji2) X X7, X' (Dijea — Dije2)
+2D§jt,2XX7J4X/(Dijt,4 — Dije2) + 2D2jt,2X(X*D4 - X1*)2)XID§jt,2
+2255(Xp, — Xp,) X' Dijea + 227, X 55, X" (Dijt.a — Dije2)

3 ijt
6
> hijras (1),
=1
we have Ly 4 < Z?:l W Zw’t |hijt.24 (1)] e?jm = Zle Ly 4 (1), say. It suffices to show that Lo 4 (I) =

op(T71) for 1 =1,2,...,6.
For Ly 4 (1), we have

Lo (1) < || XD, — Xp,

—1 —
o > llwijell? €20 = Op (NMT) 7Y,
» NMT -

1,55t

. 2 2
as we can readily show that Wzmﬁ lzijell” €300 = qut @il " uije0 + 0p (1) = Op(1). For
L274 (2) , We have

L2a (2) < || X5,

2 _ _
lop NMT > (Dijea— Dije2) X|* €100 = Op(NMT) ™10, (1) = 0,(T7Y).

1,5t

_ _ 2 _ _ — —
as we can show that —NJQT Zi,j,t H(Dith — Dijm)lXH e?jt,z = —NIbT Zm.,t \Tij. — Ti. —Tj. + nc||2 ezzjm =
Op(1). For Ly 4 (3), we have by the Cauchy-Schwarz inequality

1/2
1 _ _
L2,4 (3) < 2 m ZD;jt,QXXB4X/Dijt726i2jt,2 {L274 (2)}1/2 .
it
We have
1 B * B * 1 — — — —112
NMT Zngt,2XXD4X/Dijt,2€?jt,2 < HXD4 ’Sp NMT Z |Zi.. +T.j. + Tt — 37| e?jt,Q

4,35t 4,55t

= 0, (NMT)™).
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It follows that Lo 4 (3) = O, (NMT)™Y/2) {La.4 (2)}'/* = 0, (T71).
Noting that

|X(Xp, = Xp)X'|| = | X[(X'Mp,X)"" = (X'Mp,X) ']X’ .
= ||X(X'Mp, X)) [X'(Mp, — Mp,)X] (X' Mp,X) " X'
sp
< (- -x'mp,x - L X, x - ! X2
= NMT " P NMT = P2 NMT " lsp
sp sp
1
X WXI<MD4 — MDZ)XH
= 0,(1)0,(1)0p (1) 0, (T7') =0, (T7H)
and similarly, [|(X},, — Xp,)X'|| = (NMT)""2 0, (T~") , we have
2 B * * B
Loy (4) = T 2 1D} 20X (X, — Xp,) X' Dijea| €3y
T * * 2 7 - -
< max HDijt,2||2 | X(Xp, — XDz)XIHsp NMT ”Ztelgjtﬁ < dy0, (T71) 0, (1) =0, (T7),
and
2 . _
L2a(5) = w7 > |al (X, — X5,) X' Dijeal €10
7,7,t
_ . . 2
< mas [Dueall (X5, ~ X5,) X1, 7o 3 bl e

1,7,
= &20,(NMT)*)0,(T"1)0, (1) = 0, (T,

where we use the fact that HDiﬁ72H2 = ds.
For L; 4 (6), we have

2 . B ~
L2a®) = w377 > 1wt X5, X" (Dijia — Dije)| €
it
1/2

L 7 1/2

= NMT > it XbTijeelin {Laa (2)}Y
it
1/2

« 111/2 1 9 o

< Xballe” § w2 lwel® €hiea o (L2 (201
it

0, ((NMT)‘”Q) 0, (1) 0, (T—W) =0, (T71).

This completes the proof of (i).
(ii)-(vii) The proofs are completely analogous to that of (i). the main difference is that we need to use

the probability order of D, A = .. + @y + @y — 30, Dyjy3A = Gy — @, Dyjy4A = @iy + Ty — 20,

—_—/ _ ) _ _ _ _ — _ _ _ _ _ _ .
Dijt,sA =0.j; —a, Diij = T4 +0.j; —a.. —a and Diij =it +C.j; +qjj. — Q.. —@.j. — Q.. in order. W

Proof of Lemma B.1. (i) When Model 7 is used, the residual vector is given by U= MD7U—MD7X(B—

26



B). By Lemma A.2(v), Mp, = Inyr — Py — Pjp — P, where

Jm Jr Jr Jur
Py, =1 Iy —2)= =1 —7I
i N® (Inp ”)®T NM®T N®Z”T
Prr = (In N)®M®IT—IN®M®IT N © Ir. and
JN JT J JN JT
P = — I Ir — — I - =
T N®M®(T T) N®MT ~ O lu®—.

So a typical element of Mp,U is given by

Wsjt — (ﬂm — ’L_Lz) — (ﬂz’.t — ’L_L..t) — (’l_t.jt — ﬂ]) = ’ilijt.
Therefore, ;¢ = ;e — (B — ﬂ)/iiﬁ, where &;;; is defined analogously to ;;;. Under the stated assumptions,
we can readily show that 8 — 8 = O,(ny ). It follows that

T-1
1 7177 / po / 1 . .o/ o
NMT1 (Z Z—-17 Z) 6) NMT1 Z Z xijt‘rijt<ﬁ - ﬂ) - (5 NMT1 Z Z xl]tuljt

4,7 t=1 i, t=1
= Op(UNMT) 'Op(l) ) Op(UNMT) + Op(TINMT) ) Op(l) = Op(UNMT)a

[
a

T—1 T-1
where we use the fact that WTI Do Z Zije375, = Op(1) and that WTI Doy 2 Fijeligie = Op(1).
" ~ =1

(ii) The analysis is analogous to that in (i) and thus omitted.

(iii) First we need to prove (Z'Z)"Z'U — p = Op(%pr)- When p = 1, we have p = py, vt =
WUijt — PUij,t—1 and

tiij,e — plliji—1 = Vije — Uip — Uoje + Uop + (1 = p) (Wi + Ty — Tyj.) -

Then

—1 . . .
(Z2) " ZU-p = | i, > i | —p

1,35t 1,35t

= D | D e g = Tir =T+ T+ (1= p) (W + Ty — W)

i,j,t ij,t
- —1
_— “2 “,, .. _ P “2 “.. _,,
- Z Uijt—1 E Gizj,e—1vi5t — (1 — p) E Wij,t—1 E WUij,t—1UWij.
ij,t it it it

+0,(NMT)™1)

where the third equality follows from the fact that = Ziil e = 77 Zjle Uije = T, NT1 ZZ 1 Zt o Uit
= M1T1 Z;VII ZtT , .4 = T, and both @ and T are O,((NMT)~'/2). Similarly, noting that ¥ Zi:l Uijt =
i Z _, U;j+ =T, we have

1 .
NMZuijTuij' = NMZUZJT j- — Wir — Ugr + Uj. + U T—I—uj)uij.
1,7

1
1,J

= Op(T™1) + Op((NM) )0, (NMT) ™2,
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and

1 . _
NT Zuzj,tquij- = NMT Z (Z (e U’ZJT> Usj.
%7, ) t=1
= TR 2 T~ o O B
2,7 1,7
= O,(NMT)™1) +O0,(T~* + (NM)~tT~1/2).

In addition

NMT Zvljtuljt 1 = NMT sz]t WUjjt—1 — Us. gt—1 - E-j,tfl + U;.. +Ej +ﬂ..t71)
it i,J,t
= O, (NMT) Y24 N 4 M 4T + (MT)' + (NT)" ' + (MN)™")
= Op(’?NMT)-

AAAAAA

It follows that (Z'Z)"' Z'U — p = Op(nxprr)- Then (Z'Z) Z'0 — p = Op(ny ) follows by noting the
results in part (i)-(ii). W

Proof of Lemma B.2. (i) By the Assumptions A.5(iv) and A.1(iv)-(v) and noting that Z;;; 1 = 25 —
PTij¢—1, we have

o XU

NMTl va Zije = priji—1) o (X'X)

= Op((NMT)_l/Q)Op((NMT)_l/Q) = O0,(NMT) ™).

To prove (ii)-(vii), noting that Zijim = Zije.m — PZiji—1,m = (Tije — pTija—1)s (dijem — pdiji—1,m)")

= (T, d;jt m) for m =2,..,7, we first apply Lemma A.1l and make the following decomposition

1 o (XU
Qm = NMT1Z”ijt(xgjtvdgﬂvmxz’/”zm) <D4nU>

it

1_ —
- NMlev”t{ (i (X'Mp, X)™' X'Mp, U — d} (D D) "' Dy X (X'Mp, X) ™ X'Mp, U

1,5t
+d2]t m(D;mDWL)_lD'ImU}
Qm,l - Qm,2 + Qm,37 say. (Cl)

Let Q@ = Wﬂ thvzgtdm (D D) 1D X and S, = (X'MDWX)f1 X'Mp, U for m =2,...,7. Define

fm m = A' Dy (D}, D)~ dij m and Ejtm = A'D (D;an)flazijt,m for A ={ai;+} and m=2,...,7.
(C.2)
Noting that €157, = (@, —)+(a@;. ~@)+(@.—a), Eiits = Wiy, €y 4 = (@i~ @)+ (e —0), €5y 5 = Tje— T,
5?;?6 = (@it —a..t) + (a.;+ — @), and fm 7= (@it —@.t) + (@i5. — @;..) + (@j+ — @.5.), we have that

o = (1—p)(@. +a; —2a) + (1 — pL)(@.. — a),

f;‘ljm = (1-p)(ay. —7a)

Eijpa = (1=p)(@i;. —a)+ (1 —pL)(@.. —a),

§ins = (L—pL)(@j —a),

s = (L=pL) (@4 —U) + @y —a)],

Eier = (L=p)(@s;. — @) + (1 = pL)[(@sr — @) + (@50 — @) (C.3)
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We are ready to prove (ii)-(vii) in order.
(ii) For Q2,1 we have by Lemma A.4(i) and Assumptions A.1(v) and A.5(iv),

Q21 = NMlev”tx”t (X' Mp,X) " X' Mp,U

= Op(NMT)" V)0, (NM)™! + (MT) ™" + (NT) ™" + (NMT)~'/?).

Note that Q22 = @Q252. Using §§ljt’2 in (C.3) with @ = z, we have by Assumptions A.3 and A.5 and the
Cauchy-Schwarz inequality

QQ = NMT Zj;vmt p)(iz +7Z.,. — 2?) + (1 — pL)(f,,t — f)]
Sl o S L1 L N L
= = ;U(x Zv —T) + A ;v..t(l — pL)(Z.. — T)

= Op((MT)™"+ (NT) ' + (MN) h.
Then by Lemma A.4(i) and Assumptions A.1(v), Q22 = Op((MT)_2 + (NT)"2 4+ (MN) > + (NMT)™ ).
Using £, o in (C.3) with a = u

Q2,3 = NMT Z v’b]td”t 2(D12D2>71D/2U
1,5t

- NMT ZUUt — p)(Ti.. +u. . — 21) + (1 — pL) (... — 1)

2,7,t

= i v 0= P+ 75+ (= pL] + Op(NMT) ),
1.7,¢
Summarizing the above results yields Q2 = WTI Dt Vigt (L= p) (Wi +0.5.) + (1 — pL)u.4]+0, (MT) >+
(NT)™2 + (MN)™> + (NMT)™).
(iii) For Q31 we have by Lemma A.4(ii) and Assumptions A.1(v) and A.5(iv), Q31 = O,((NMT)~'/2)
xOp(T~' + (NMT)~1/?). Note that Q32 = Q3S53. Using §iivs in (C.3) with a = x, we have by Assumptions

A3 and A6 L 1
z) 1-p 2) B
Qs = N7y 2 (i W 2T T =) = 0T

,5,t

Then by Lemma A.4(ii) and Assumptions A.1(v), Q32 = p(T >4+ (NMT)~"). Using £, 5 in (C.3) with

a=1u,

Q3’3 - NMT Zvljtdzjtli(DéDlS)ingU
4,5t
1 _ a7 —
- NMT §U1ﬂ Wij. — ) = NMT ;Uijtuijl +O,(NMT)™1).
Summarizing the above results yields Q3 = ﬁ% S, 4 Vigiig. + Op(T=2 + (NMT) ).

(iv) For Q4,1 we have by Lemma A.4(iii) and Assumptions A.1(v) and A.5(iv), Qa1 = O,((NMT)~'/?)
XOp(T™1 + (NM)~" + (NMT)~/%). Note that Q4,2 = Q45s. Using &), 4 in (C.3) with a = x, we have by
Assumptions A.3 and A.6

@ NMT > vije (1= p)(@ij. = T) + (1 = pL)(T... — T)]

,5,t

- W ZU” T Tt Til DTl = pL)(@0 = T) = Op(T~" + (NM) ).
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Then by Lemma A.4(i) and Assumption A.1(v), Qs = Op(T~% + (NM)~2 + (NMT)™"). Using &£§j; 4 in
(C.3) with a = u,

Qis = ﬁ ;vm (1= p)(Wij. =) + (1 — pL) (W, — )]
- NJ\14T1 ;Uiﬁ [(1 = p)Uij. + (1 = pL)u.e] + Op(NMT) ).

Summarizing the above results yields Q4 = Wm > i Vige (L= p)tj. + (1 — pL)a. 4] +O0,(T~2 +(NM) 2+
(NMT)™1).

(v) For Q5,1 we have by Lemma A.4(iv) and Assumptions A.1(v) and A.5(iv), Q51 = O,((NMT)~1/?)
xO,(N~'+ (NMT)~*/?). Note that Q52 = Q5S5. Using §ije5 in (C.3) with @ = z, we have by Assumptions
A.3 and A6

_ 1 _ _ 1 _ _ _ _
Qs = WTl sz’jt(l —pL)(@ji —T) = M—T1 Zv-jt(l —pL)(@.jt —T) = Op(N 1)-
iyt it

Then by Lemma A.4(iv) and Assumptions A.1(v), @s2 = Op(N > + (NMT)™"). Using &}, 5 in (C.3) with
a=u,

1 _ _ 1 _ _
Q53 = NIIT, > wije(1— pL) Wy — ) = NIIT, > wije(1 = pL)tje + Op(NMT) ™).

i,5,t 4,5t

Summarizing the above results yields Q5 = WTI > i Vigt (L= pL)T 3] +O0p(N72 + (NMT) ™).
(vi) For Qg1 we have by Lemma A.4(v) and Assumptions A.1(v) and A.5(iv), Q.1 = O,((NMT)~1/2)
xOp(N~1+ M~1 + (NMT)~'/2). Note that Qg2 = Q¢Ss. Using &}, ¢ in (C.3) with a = x, we have

~ 1
= — (1 — o) (Fss — e

Qs NMT, g:t%t( pL) (Tit —Tot) + (Tjt — T))
1 —_ L oy ) o
~ NT, izt”i-t(l —pL)(Tit —Tot) + (T jt —T) + MTy thU-jt(l PR )

= Op(N '+ M.

Then by Lemma A.4(v) and Assumptions A.1(v), Qe = Op(N"2+ M2+ (NMT)™"'). Using &ijee in (C.3)
with a = u,

1 5 _
Qe3 = WTl ”Ztvijtdgjt,G(DéDG) lDéU
1 _ — _ —
= S w1 - L)@ +Tg0) + Op(NM) ™+ (NMT) ),
]\71\4/1’11 — J J P

Summarizing the above results yields Q¢ = WTI > it Vigt(L=pL) (Wit +70.j¢) +O,(N724+M24+(NMT)™1).
(vii) For Q71 we have by Lemma A.4(vi) and Assumptions A.1(v) and A.5(iv), Q71 = O,((NMT)~'/?)
xOp(N7' + M~' + T71 + (NMT)~%/?). Note that Q72 = Q7S7. Using iier in (C.3) with a =, we have
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by Assumptions A.3 and A.6
~ 1

& = Fum g;vijt (1= p)@ij. —Fi) + (1= pL) [(Fit — To) + (Fjy — T.3.)]}
— ﬁ ZZJ:EJ- (Tij. —T) — (@i — )] + NLTl ;Et{(l —pL) [(Fi —T) — (Tt — T)]}

b S A= L) (@1 - ) - (5.~ D)

= Op(T'+M ' +N.

Then by Lemma A.4(vi) and Assumptions A.1(v), Q72 = Op(N"* + M2 + T~ + (NMT)™"). Using &5, 7
in (C.3) with a = u,

@rs = Nz\lnl mz-t% {(1 = p)(TWij. — Ts.) + (1 — pL)[(Tirt — Tt) + (Tje — T.j.)]}
= 7NA14T1 ;t%t [(1 = p)aij. + (1 — pL) (Wit + T je)] + Op(NM) ™" + (NT) " + (MT) ™).

Summarizing the above results, we have Q7 = Wrﬁ >i g Vigt (1= p)Tij. + (1 = pL) (Tt + T.jt)] +Op(N 2+
M72+T72+(NMT)™'). m

Proof of Lemma B.3. (i) This basically follows from the proof of Lemma B.2(ii) and (iv). The main
difference is that some terms in the expansion of Q5 are cancelling with the corresponding terms in Q4. To
see this, we continue to use the expansion in (C.1). Then Q4 — Q2 = Z?:1(Q4,l — Q2,1). It suffices to show
that Q473 — Q273 = ]1\,—7]& Zi,j Tij.Uij. + OP(T_2 + (NMT)_l) and Q4’g — Q27l = OP(T_2 + (NMT)_l) for

I = 1,2. Recall that Qm = 5 Yoy.1¢ Vitsem(Diy D) 1D, X and Sy, = (X'Mp,, X)™' X'Mp,, U for
m=2,..7.
For Q4,1 — Q2,1, we have
Qui— Q21 = Q(S1—82) = QX Mp,X) ' X' (Mp, — Mp,) X (X'Mp,X) '] X'Mp,U
+(X'Mp,X) " X' (Mp, — Mp,) U],
where Q = NI Doi g VigtEye = O,((NMT)~%/?) by Assumption A.5(iv). Noting that
1 _
WX/ (Mp, — Mp,) X (X'Mp,X)”' X'Mp,U = 0, (T71) Op(T~" + (NM) ™" + (NMT)~1/?)
and
1 , 1 — —\ (= - —1 -1
NMTY (Mp, —Mp,)U = T ;(a?if =) (Uij. —0) + Op(NT)"" + (MT) ™)
1 _ _ _ _
- NMT Z;waug +Op((NT)™" + (MT)™") = Op(T71)

by Lemmas A.12(i) and A.4(iv), we have Sy — Sy = O, (T~!) and Qu,1 — Q21 = Op(NMT)~/2)0,(T~1)
=0,(T72+ (NMT)™1).
For Q4.2 — Q2,2, we make the following decomposition

Qu2— Q22 =045S1 — Q252 = (Q1 — Q2)Ss + Q2 (Sy — S2).

Noting that (dijt74(DﬁlD4)71DﬁlX)/ = (flj — T) + (T.At —T) and (dijt,Q(DéDQ)ilDéX)/ = (Tz —f) + (TJ -
T) 4+ (T.+ — T), we have

!

(dije,s(DyD) D4 X)" — (dije 2(Dy Do) ' DyX) =Ty — Ty — Tjo + T
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and by Assumptions A.3 and A.5 and the Cauchy-Schwarz inequality

_ _ 1— _ _ _ _
Q1 — Q2 P E Vijt (:EZ] — T — T+ x)
1

Then
Qi2— Q22 = (Qu—Q2)Ss+ Q2(S1— )
= Oy (T71) Op(T™" + (NM) ™" + (NMT)™'/?)
+O,((MT)™" + (NT)~' + (MN) ™" + (NMT)""/*)0, (T™1)
= o0p (T_l) .

For Q4,3 — Q273, we use the fact that dijt74(DiD4)_1DﬁlU — dijmg(DéDg)_lDéU = ﬂij. — U;.. — ﬂ.j. + u,
Assumptions A.1-A.2 and A.5-A.6, and the Cauchy-Schwarz inequality to obtain

Qa3 — Q23 = NMT vat Uij. — Up.. — Wy +70)

%,7,t

= (1 — p) ﬁ Zﬂijﬂij- — % Zﬁzﬂl — % Zﬁ.j.ﬂ.j. +7}_)
2 J

= e YT+ Op(MT) T+ (NT) )

4,J

In sum, we have shown that Q4 — Qo = N—]& ;5 Tigij. + op(T71).

(ii) This basically follows from the proof of Lemma B.2(iii) and (iv).
(iii) This basically follows from the proof of Lemma B.2(iii) and (vii).
(iv) This basically follows from the proof of Lemma B.2(iv) and (vii).
(v) This basically follows from the proof of Lemma B.2(v) and (vi).
(vi) This basically follows from the proof of Lemma B.2(v) and (vii).
(vii) This basically follows from the proof of Lemma B.2(vi) and (vii). B

Proof of Lemma B.4. (i) Note that Z;j:1 = i+ — pij—1 and by Assumption A.1 (iv)-(v), we have
Ly = 5 U'X (X'X) TS0 (@ige — pwija) - (@ije — prije—1) (X'X) 7 X'U = O,(NMT)™1),
To prove (ii)-(vii), we first apply Lemma A.1 to obtain the following decomposition

L = (Cm 1 Cm 2) NMT Z Zijt, leJt m ( gmé )

4,55t

= C'/m,lNMT wat mxl]t mle +Cm 2NMT Zdl.]tm ijt, mC’m2

4,5t %,5,t

+2<m1NMT lejtm ijt, mCmQ

1,55t
= Lmi+Lmnz+2Lns, (C.4)

where ¢, ; = (X'Mp, X)"'X'Mp, U and (,, , = (D,, D)~ ' D;, U — (D},Dy,) ' D, X(,, ; form=2,..,7.
Note that L1 = Op(|[¢1]|*) whose exact order can be obtained from Lemma A.4 under Assumption
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A1(iv)-(v). Let &}, be defined as in (C.2) whose expressions are given in (C.3) for m = 2,...,7. Note that

Lm,Q = WTl ”Zt(gijt,m)Q + C;rz,lWTl “Ztéijt,méijlt,mCm,l - WTl ”Ztgijt,mgij{t,mgm,l
= Lm’Q (1) + Lm,g (2) - 2L272 (3) , say, (C5)
and
L _ / 1 ~ U / 1 . x/
m3 = C”“Wﬂ ”thwt,m&jt,m - C”“Wﬂ ijzt‘rljt,mfijt,mgm,l
= Lm,S (1) - Lm,3 (2) , say. (CG)

We have several key observations under Assumptions A.1-A.3 and A.5-A.6: (1) Wﬂ Zm’tffjmg%’z =
Op (1) ) (2) Wj’l Zi,j,t jijt,mgz{t’m = OP (1) ) (3) both WTI Zi,j,t é.fjt,méyjt,m and WTI Z@j,t iijtmé?jt,m
have the same probability order as ||Cm’1 H . As a result,
2
Ly, = Lm,2 (1) + O(HCm,l” )
By (C.3) and Assumptions A.1(iv), A.2, and A.5(iv) we have
1

L2 (M) = T > [(1=p) @+ —20) + (1 - pL) (@ — )"

4,95t

= G @ 4w + 5 S0 - pLm + 0,(N M),

NM =
Laa() = warr > (= P )+ (1= pL(T.s ~ D)
= % Zﬂfj_ + Til > (1= pLya.]* + Op(NMT)™1),
Liall) = gy S0 )+ (= pD)(E.
- Uy 31 = pE)TAF + O(VMT) ™,
Lia() = warm Z (- pL) (e )"

2,7,t
1 _ _
= T D (1= pLyui]* + Op(NMT) ™),
7,t

1

Loz() = gz 2ol = pL) (e ) + (750~ )P
= NZ\14T1 DAl = pL)Ta]” + [(1 = pLYT )"} + Op(N T2+ M72 4 (NMT) ),
and B
Lz2(1) = NJ\14T1 Z (1= p)(Tij. — Ti.) + (1 = pL) (Wit — Tt + (@je — T.5.)]]°

2
- % 2T+ NA14T1 D10 = pL) (@i + 750

,J 2,55t

+Op(N2+ M2+ T2+ (NMT) ™).
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Summarizing the above results yields the conclusion in Lemma B.4. B

Proof of Lemma B.5. The ]E)roof follows from that of Lemma B.4 by keeping track some mutually
cancelling terms as in the proof of Lemma B.3.

D Nickell biases for the seven estimators of the slope coefficient
in the panel AR(1) model

In this section, we study the Nickell biases for the seven estimators of the slope coefficients in the panel AR(1)
model. We continue to use the notation defined in the main text and write Model m as follows
Y = wvurBo+Y-181 + Dy +U
XB+ Dy, + U, (D.1)

where D,,, T, and U are as defined in Section 2. For the panel AR(1) model, 8 = (60,61)/, and X =
(enmr, Y—1), where ey is an NMT x 1 vector of ones, and Y_; is an NMT x 1 vector that stacks Yijt—1
fort =1,...,T. Note that we assume that y;;0’s are observed here.

Let Bﬁm) denote the least squares dummy variable (LSDV) estimator Bim) of 81 in (D.1) based on Model
m. Balazsi, Matyas and Wansbeek (2018, BMW hereafter) study the Nickell biases of these estimators when

A (2
N = M pass to infinity and T is fixed. In this special case, they show that the asymptote bias of Bg ) is

~ (5 ~ (6 ~(m
O (77) , that of Bi ) and Bi Vs zero, whereas the asymptote biases of [35 ), m = 3,4,7, are O () and share
the the same dominant term. In our setup, we allow N to be different from M and both diverge to infinity
jointly with T'. Based on Model m in (D.1), the estimator of 3, is given by

(m)
Eh

where M}, = Mo = Inyr — %m, M}, = My— Pp,, form=2,..,7,and Pp, = Dp, (D;an)_1 D,,.
Note that M}, is a projection matrix due to the orthogonality between D,, and ¢ynr. Following the

— By =Y M}, You) (Y M}, U), m=1,...,7,

calculations in BMW (Section 5.1), we can show that the leading term of E(Bgm)) — (3, is given by

E(te(Y/ M}, U)  1-53 (tr(M;,m\I:) —tr(Mgm))
E(tr(Y/ M}, Y1) 26 tr(M}, ) ’

where ¥ = Iny ® ¥y and

I A
oo | A1

Lo B

f*l By 1

Please note that due to the differences in the construction of the dummy variables in this paper and in BMW,
our tr(Mp, ) and tr(Mp, W) are different from that of BMW (Table 2).

By Lemma A.2(iii)-(v) and the fact that tr(A4; ® As) =tr(A4;)tr(As), we have that

tI‘(P]) = N-— ]., tI‘(PJ) =M — ]., tr(PT) =T — ].,
tI‘(P]J> = NM—]., tI‘(PJT):MT—].,
tr(Pp) = T(N—1), tr(Pf;) = N(M — 1), and tr(P%p) = M(T — 1).
With these results, we can show that
tI‘(P[\I/) = (N — 1)9T; tr(PJ\IJ) = (M — 1)9T, tr(PT\IJ) =T — 9T,
tI‘(P]J\If) = (NM - 1)9T, tI‘(PJT\I/) =MT — OT,
tr(PjpU) = T(N —1), tr(P;; V) = N(M — 1), and tr(Pj;®) = M(T — 67),
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where O =tr(%Jr¥o) = 1+ % (1 - %ﬂi> . The results of tr(Mp, ) and tr(Mp W) can be summarized

1-5,
in Table C1.

Table D1: tr(My, ) and tr(Mp, W) for model m =1,...,7

Model tr(Mp, ) tr(Mp, V)
1 NMT-1 NMT —0r
2 NMT+2-(N+M+T) NMT —0p(N+M —-2)-T
3 NMT-NM NMT —6prNM
4 NMT-NM-T+1 NMT — 6 NM —T + 6r
5 NMT-MT NMT — MT
6 NMT—-MT-T(N-1) NMT — MT —-T(N —1)
7 NMT-(NM+MT+NT)+N+M+T—-1 NMT —-0r(1+NM—-N—-M)—-NT-MT+T

Consequently, we can obtain the Nickell biases for B im) as summarized in Table D2 below.

Table D2: Nickell biases for Model m
1-p7 tr(Mp  V)—tr(Mp )

Model Biases: TN (ML 0
Do
1 ~(1+ B warr + ol warr)
2 ~(+P)(x7 + m7) +olmr + 77)
3 (1AL +o()
4 —(1+B1) 7 +o(7)
5 0
6 0
T 4Bk fo(d)
Note: Apparently, the bias 7](\}&?1) in Model 1 is always of smaller order than the variance term

and thus can be always neglected asymptotically.

When the true model is given by Model 1 but one obtains the LSDV estimator 3§m) of 3, based on Model
m, the Nickell bias of B im) is identical to that given in Table C2 simply because Model 1 is nested in Models
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