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Abstract

In this paper, we propose a jackknife method to determine the type of fixed effects in three-dimensional

panel data models. We show that with probability approaching 1, the method can select the correct

type of fixed effects in the presence of only weak serial or cross-sectional dependence among the error

terms. In the presence of strong serial correlation, we propose a modified jackknife method and justify its

selection consistency. Monte Carlo simulations demonstrate the excellent finite sample performance of our

method. Applications to two datasets in macroeconomics and international trade reveal the usefulness of

our method.
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1 Introduction

Standard two-dimensional (2-D) fixed effects panel data models (see, e.g., Baltagi (2013) and Hsiao (2014))

have the advantage of modeling heterogeneity by introducing time effect () and individual effect (). In

recent years, three-dimensional (3-D) panel data models are employed to study various phenomena in many

economic fields, such as international trade, transportation, labor, housing, and migration (see, e.g., Mátyás

∗We sincerely thank the editor, the guest editor and two anonymous referees for their constructive comments that help to
improve the quality of the paper. We thank Laszlo Balazsi, Laszlo Mátyás, and Juliana Y. Sun for sharing their datasets.

We thank Yoon-Jae Whang and the participants at the 2017 International Panel Data Conference in Thessaloniki, Greece,

the 3rd Guangzhou Econometrics Workshop and CUHK Workshop on Econometrics. Lu acknowledges the funding support

from the Hong Kong University of Science and Technology (Grant SBI16BM28 and SBI17BM18) and the National Natural

Science Foundation of China (Grant 71773146). Su acknowledges the Singapore Ministry of Education for Academic Research

Fund under Grant MOE2012-T2-2-021 and the funding support provided by the Lee Kong Chian Fund for Excellence. Address

correspondence to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford Road, Singapore, 178903;

Phone: +65 6828 0386; E-mail: ljsu@smu.edu.sg.

1



(2017) for a recent review). In the trade literature, the 2-D panel model was firstly extended to the 3-D

framework by Mátyás (1997) who considered Model 2 in (1.1) below. Thereafter, other 3-D panel data models

were proposed in the trade literature. Egger and Pfaffermayr (2003) proposed a panel gravity model taking

into account the bilateral interaction effect by including the bilateral specific effect  . Baltagi and Egger

(2003), Cheng and Wall (2005), Baldwin and Taglioni (2006) and Baier and Bergstrand (2007) also proposed

several variations of the 3-D fixed effects panel data models. Balazsi, Mátyás, and Wansbeek (2018) showed

that the least squares dummy variable (LSDV) method can be applied to estimate the coefficient consistently

and illustrated that these results can be generalized for higher dimensional panel data models.

In the 2-D fixed effects panel data models, there are only four types of specifications of fixed effects in

the absence of interactive fixed effects. However, in the 3-D models, the number of possible specifications

of fixed effects can be as large as sixty-four
¡
26
¢
theoretically. Therefore, it is a highly empirically relevant

question to determine which model to use in practice. The goal of this paper is to provide a practical method

to select the correct specification of fixed effects in the 3-D panel data models. Specifically, we consider seven

commonly used candidate models as suggested by Balazsi, Mátyás, and Wansbeek (2017, 2018):

Model 1 :  = 0 + 

Model 2 :  = 0 +  +  +  + 

Model 3 :  = 0 +  + 

Model 4 :  = 0 +  +  + 

Model 5 :  = 0 + ∗ + 

Model 6 :  = 0 +  + ∗ + 

Model 7 :  = 0 +  +  + ∗ + 

(1.1)

for  = 1    = 1  and  = 1   where  is the dependent variable, e.g., the volumes of trades

(exports) from country  to country  in year   is a  × 1 vector of regressors that contains a constant
term and may also include the lagged dependent variables,  is the idiosyncratic error term, and   

   
∗
 and  are fixed effects that are treated as fixed parameters to be estimated.

In practice, there are two main motivations for model selection. First, an economic theory may suggest

certain types of models and it would be interesting to know which model is likely to be true empirically. In

our context, different specifications of fixed effects may be interpreted differently and it would be useful to

understand the types of interactions of the unobserved heterogeneities. For example, consider the gravity

model in international trade where  is the trade volume (exports) from country  to country  in year

 Country fixed effects have been argued to be important for the gravity models (see, e.g., Feenstra (2016,

p.143)), as they represent unobservable multilateral resistance levels termed by Anderson and van Wincoop

(2003). Therefore, if the multilateral resistance levels are time-varying, represented by  and ∗ here, the

trade theory would support Model 6 and Model 7. Our method can select the correct model consistently

and thus can be used to confirm or reject the theory. Taking another example, let  be the wage for

worker-type  employed by firm  at time  In an assortative matching model, Shimer and Smith (2000)

argue that there might be complementarities between firms’ productivity and workers’ ability. Given that

firms’ productivity and workers’ ability are typically unobservable to econometricians, their theory would

suggest that the interaction term  is important and Model 3, 4 and 7 would be appropriate.
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Second, model selection is important for the estimation and inference for the parameter of interest (typi-

cally  here). If we apply a misspecified model that is smaller than the true model, we may suffer from the

notorious omitted variable bias (OVB) issue. If we adopt a larger model that nests the true model, we may

have substantial efficiency loss as we have included many redundant dummy variables generated by the fixed

effects. When   and  are all large, the number of redundant dummy variables can be huge and thus

tends to result in enormous efficiency loss. For this reason, it is not always desirable to adopt the largest

model (Model 7) in empirical studies. To illustrate this point, we conduct a simple simulation exercise where

the true data generating process (DGP) is

 = 0 + 1−1 +  (1.2)

(0 1) = (1 075) and ’s are IID  (0 1) random variables. Hence, here Model 1 is the true model.

Table 1 compares the mean squared errors (MSEs) of the estimates of 1 based on Models 1-7. Given this

is a dynamic model, we consider both non-bias corrected estimators and bias-corrected estimators where the

bias correction is based on the half-panel jackknife method as proposed in Dhaene and Jochmans (2015) or

the analytic formula derived in online Appendix D. For both types of estimators, the estimators based on the

true model (Model 1) achieve the smallest MSEs as expected. Adopting larger model results in substantial

efficiency loss. For example, when (  ) = (10 10 10)  the MSE of the non-biased corrected estimator

based on Model 7 is 100 times as large as that based on Model 1. The bias-corrected estimator based on the

analytic formula works but not as well as the jackknife one. For the jackknife bias-corrected estimator, the

MSE based on Model 7 is about seven times as large as that based on Model 1. Interestingly, we find that

the estimates based on Models 3, 4 and 7 perform similarly in finite samples. Following the lead of Balazsi et

al. (2018), we can study the asymptotic Nickell bias of the least squares dummy variable (LSDV) estimator

̂
()

1 of 1 in (1.2) based on Model . Table D2 in the online supplement reports the Nickell biases. It

suggests that when  ,  and  pass to infinity jointly at the same rate as we have here in Table 1, the

asymptotic biases of ̂
()

1   = 3 4 7 share the same dominant term −(1+1)


 whereas the asymptotic biases

of the other four estimators (i.e., ̂
(1)

1  ̂
(2)

1  ̂
(5)

1  ̂
(6)

1 ) are all (
1

). This observation, in conjunction with the

fact that all seven estimators share the same asymptotic variance when Model 1 is true and given by (1.2),

explains why the performance of the estimators based on Models 3, 4 and 7 are similar in Table 1 despite

the fact that Model 7 contains far more parameters than Models 3 and 4.1

Given the existence of many flexible ways of including fixed effects in the 3-D panel data models, the

specification problem is more severe and complicated than the 2-D framework. To the best of our knowledge,

so far there exists no systematic way of determining fixed effects specifications in the 3-D panel models

in the literature. In the traditional 2-D models, Wu and Li (2014) proposed two Hausman-type tests for

individual and time effects in a two-way error component model. Their method involves multiple hypothesis

tests and suffers from severe size distortion in the 3-D case because the number of hypothesis tests increases

exponentially as the number of models increases. Most recently Lu and Su (2019a) proposed a jackknife

methodology to determine the inclusion of individual effects, time effects, or both through the leave-one-out

1 If we further decompose MSE into bias and variance terms in the simulations, we can also find that for M3, M4 and M7,

both the bias and variance terms are important no matter whether bias-correction is corrected. For M1, M2, M5 and M6, the

bias terms are relatively small, and therefore, the variance terms play a dominant role regardless of whether one corrects the

bias or not.
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Table 1: Comparisons of MSEs of 1 (true model: Model 1)

Adopted Models

M1 M2 M3 M4 M5 M6 M7

N=10, M=10, T=5 8.76 19.42 1720.48 1720.35 9.62 10.22 1726.75

Non-bias N=20, M=20, T=5 2.25 4.73 1700.29 1700.29 2.41 2.56 1702.56

correction N=10, M=10, T=10 4.28 10.38 442.65 443.36 4.67 5.16 446.09

N=10, M=10, T=20 2.12 4.23 101.52 101.52 2.34 2.75 102.58

N=20, M=20, T=20 0.60 1.14 98.77 98.76 0.64 0.67 98.87

Bias N=10, M=10, T=5 9.20 21.21 118.65 119.11 10.14 10.63 138.52

correction N=20, M=20, T=5 2.34 5.23 59.26 59.25 2.50 2.66 61.42

based on N=10, M=10, T=10 4.28 7.53 22.12 22.72 4.69 5.16 28.95

jackknife N=10, M=10, T=20 2.11 2.58 7.77 7.91 2.34 2.74 9.47

N=20, M=20, T=20 0.60 0.72 2.65 2.66 0.64 0.67 2.88

Bias N=10, M=10, T=5 8.72 28.80 97.64 98.11 9.62 10.22 107.43

correction N=20, M=20, T=5 2.24 6.99 69.12 69.13 2.41 2.56 70.74

based on N=10, M=10, T=10 4.23 6.50 23.91 24.20 4.67 5.16 27.02

the analytic N=10, M=10, T=20 2.12 2.51 5.21 5.27 2.34 2.75 6.19

formula N=20, M=20, T=20 0.60 0.66 2.43 2.44 0.64 0.67 2.57

Note: Numbers in the main entries are MSEs×104 of the estimates of 1 The number of
replications is 1000.

cross-validation (CV) in the 2-D framework. For a detailed review of the specification of fixed effects in the

2-D models, see Lu and Su (2019a).

Jackknife or CV has been applied to conduct model selection in many different contexts, though often

without rigorous justification.2 In the panel context, although Lu and Su (2019a) showed that the jackknife

method could consistently select the correct model in 2-D panels, it was unclear whether jackknife would

work for 3-D panels. There are substantial differences between the 2-D and 3-D cases. First, there are

a large number of candidate models in 3-D panels that require different asymptotic analyses. The fixed

effect specifications are much more complicated in the 3-D case than those in the 2-D case. For example, in

Model 7 above, to control for the fixed effects, we need to include ( + + − − −  ) dummy

variables. We focus on the seven models in (1.1) that are commonly used in practice but conjecture that our

method remains valid for a larger subset of candidate models. Because we allow each of these seven models

to be either true or misspecified, there are 49 scenarios under our investigation. To prove the selection

consistency, we need to carefully compare the correctly specified models and misspecified models under these

49 scenarios. Second, to expedite the asymptotic analysis, we allow   and  to pass to infinity jointly

and the asymptotic analysis along the three dimensions is quite challenging. We have to pay particular

attention to the interactions of the three dimensions in our proofs, as we do not impose any conditions on

the relative rates at which   and  pass to infinity. Therefore, it is much more challenging to show the

selection consistency in the 3-D case.

Despite the involved theoretical proofs, the new methodology is easy to implement and has excellent

2The jackknife method was originally proposed by Quenouille (1956) and Tukey (1958). It can be used for different purposes,

such as bias-correction, inference and model selection. The theoretical work on jackknife for model specification includes Allen

(1974), Stone (1974), Geisser (1974), Wahba and Wold (1975), Li (1987), Efron (1983, 1986), Picard and Cook (1984), Andrews

(1991), Shao (1993), Hansen and Racine (2012), and Lu and Su (2015), among others.
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performance in Monte Carlo simulations. In particular, it can easily handle unbalanced panels, which is

a common phenomenon in multi-dimensional panel data. Asymptotically, we prove that this method can

determine the correct model with probability approaching one as all the three dimensions go to infinity.

As well, we argue that this method can be extended to higher-dimensional fixed effects panel data models.

Although here we focus on seven popular candidate models in our asymptotic theory, we expect that our

methodology can be applied to the other 3-D models or even 3-D nonlinear panels.

It is worth mentioning that here we focus on the selection consistency of our approach and leave the

post-selection inference issue untouched. For the post-selection estimation and inference for the parameter of

interest (), it is desirable to consider uniform inference, which remains a challenging question in the model

selection literature and certainly goes beyond the scope of this paper.

We provide two empirical applications to illustrate the usefulness of our new method. In the first ap-

plication, we apply our method to the dataset used in Samaniego and Sun (2015), where they adopt Model

7 to investigate which technological characteristics lead industries to experience the most difficulty during

the recession period. The dependent variable is the growth of industry  in country  at time  and the

key independent variable is the interaction term between the recession indicator and industry technological

characteristics. Our method finds that Model 6 is an appropriate model and country-industry fixed effects

are redundant. In the second application, we apply our method to gravity equations in international trade.

The dependent variable is the logarithm of the export of country  to country  in year  and the indepen-

dent variables include the logarithm of the sum of country 0s GDP and country 0s GDP in year  and the

logarithm of the sum of country 0s population and country 0s population in year We show that the largest

model (Model 7) is an appropriate model for gravity equations.

The rest of the paper is structured as follows. In Section 2, we discuss the 3-D panels with different types

of fixed effects and introduce the notation to put all these models in a unified framework. We propose the

jackknife method to determine the types of fixed effects in the 3-D panels and study its asymptotic properties

in Section 3. We propose a modified jackknife method to incorporate strong serial dependence and study its

consistency in Section 4. Section 5 reports Monte Carlo simulation results and compares our new methods

with information criterion (IC)-based methods for both static and dynamic panel DGPs. In Section 6, we

apply our method to two datasets to study () the interaction between technology and business cycles and

() the gravity models in international trade. Section 7 concludes. The proof of the main result (Theorem

3.1) is relegated to Appendix A. The proof of Theorem 4.1, the proofs of the technical lemmas and the

derivation of the Nickell biases for the panel AR(1) models are relegated to the online Appendices B, C, and

D, respectively.

Notation. For an ×  real matrix  we denote its transpose as 0 its Frobenius norm as kk and its
spectral norm as kksp . Let  ≡  (0)−10 and  ≡  −  where  denotes an × identity

matrix. When  = {} is symmetric, we use max () and min () to denote its maximum and minimum

eigenvalues, respectively. Let  = 
0
 where  denotes an × 1 vector of ones. Let ⊗ denote Kronecker

product and
−→ convergence in probability. We use (  ) → ∞ to denote that   and  pass to

infinity jointly.
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2 Models and Notation

We consider a 3-D panel where the dependent and independent variables are given by  and  respec-

tively, for  = 1    = 1  and  = 1    For notational simplicity, we will assume that  =

for each  and  =  for each pair ( ) and remark that our asymptotic theory continues to hold for the

general case of unbalanced panels but with more complicated notation. As Balazsi, Mátyás, and Wansbeek

(2017, 2018) remark, there are 26 ways to formulate the fixed effects in a 3-D panel, but only a small subset

of these are considered and applied in empirical applications. Following these authors, we only consider the

selection of the seven models as in (1.1) that are frequently employed.

Model 1 is a pooled regression model that ignores unobserved heterogeneity. Model 2 allows the specific

effects to enter the model additively. Model 3 only allows a pairwise interaction between the - and -specific

fixed effects but the model can be studied as if one studies the usual 2-D model with individual fixed effects

by treating observation along the ( ) dimensions as one single dimension. Similarly, we can study Model 4

as if we study the usual 2-D model with two-way error components by treating ( ) dimensions as a single

dimension. Model 5 allows the interaction between the - and -specific effects while Model 6 allows two

pairwise interactions of specific effects. Model 7 encompasses all three pairwise effects and nests Models 1-6

as special cases.

Model 2 has been frequently adopted in empirical research; see Mátyás (1997), Goldhaber, Brewer, and

Anderson (1999), Egger (2000), Davis (2002), Egger and Pfaffermayr (2003), among others. Mátyás (1997)

applies Model 2 to estimate a gravity equation where the dependent variable is the logarithm of the trade

(exports) from country  to country  at time  Egger (2000) considers the Hausman test for random effects

versus fixed effects in Model 2 for the gravity equation considered by Mátyás (1997) and provides arguments

for the superiority of a fixed effects specification. Goldhaber, Brewer, and Anderson (1999) apply Model 2

with random effects to determine how much of the achievement on a 10th-grade standardized test can be

explained by observable schooling resources and unobservable school, teacher, and class effects. Davis (2002)

considers both fixed effects and random effects estimation of Model 2 using data from a retail market where

the three dimensions of data variation are products sold in various locations over time.

Egger and Pfaffermayr (2003, EP) extend Model 2 to include the exporter-by-importer (bilateral) inter-

action effects  and the time effect as in Model 4. EP find evidence that suggests that Model 4 is preferred

to the three-way error component specification in Model 2. Cheng and Wall (2005) estimate the gravity

equation for bilateral trade flows by using Model 4 with fixed effects and compare with the results from using

Model 2. They also find Model 4 is preferred to Model 2. Baltagi, Egger, and Pfaffermayr (2003, BEP)

consider fixed effects estimation of various models for bilateral trade data, including Models 5, 6, and 7. See

also Baldwin and Taglioni (2006). Baier and Bergstrand (2007) estimate the panel gravity equations with bi-

lateral fixed or/and country-and-time effects (Models 3, 7) and they consider both within transformation and

first-differencing. Berthélemy and Tichit (2004) estimate a censored version of Model 5 with random effects

where the dependent variable is the aid the th recipient receives from the th donor at time  Samaniego

and Sun (2015) apply Model 7 with fixed effects to study the growth of industry  in country  at time 

With seven models, there are 7× 7 cases of model fitting to be considered. In Table 2, we summarize all
the cases for model fitting. In each row, the fitting case for one true model is presented. For example, when
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Model 2 is the true model, Models 1, 3, and 5 are under-fitted and Models 4, 6, and 7 are over-fitted. In

the next section, we propose a method to select the just-fitted model. In the theoretical analysis, we need to

discuss over-fitted and under-fitted cases separately.

Table 2: Cases for model fitting

True model Adopted model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Model 1 0 + + + + + +

Model 2 − 0 − + − + +

Model 3 − − 0 + − − +

Model 4 − − − 0 − − +

Model 5 − − − − 0 + +

Model 6 − − − − − 0 +

Model 7 − − − − − − 0

Note: “+” “0” and “−” represent over-fitted, just-fitted and under-fitted cases, respectively.
Note that the fixed effects parameters are not separately identified without restrictions. To unify the

theory and simplify our asymptotic analysis, we impose the following identification restrictions in Models

2-7:

Model 2 :
P

=1  = 0
P

=1  = 0
P

=1  = 0

Model 3 :
P

=1

P
=1  = 0

Model 4 :
P

=1

P
=1  = 0

P
=1  = 0

Model 5 :
P

=1

P
=1 

∗
 = 0

Model 6 :
P

=1  = 0 for each 
P

=1

P
=1 

∗
 = 0

Model 7 :
P

=1  = 0 for each 
P

=1 
∗
 = 0 for each 

P
=1  = 0 for each 

That is, there are 3 restrictions in Model 2, 1 restriction in Model 3, 2 restrictions in Model 4, 1 restriction

in Model 5,  + 1 restrictions in Model 6, and  + +  restrictions in Model 7.

We stack the observations in a way such that index  goes the slowest, then , and finally  the fastest; e.g.,

 = (111 11   11  1   11  1   1   )
0 Define  and  analogously.

Then we can write Models 1-7 in a uniform way as

 =  + +  =  + 

where  = () and  =
¡
0 0

¢0
 Here ’s are the dummy matrices that incorporate the above

identification restrictions:

1 : ∅
2 : (   )

3 : 

4 : (  )

5 : 

6 : (∗  )

7 : (∗ 
∗
 

∗
 )
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where

 =

"
−1
−0−1

#
⊗  ⊗    =  ⊗

"
−1
−0−1

#
⊗    =  ⊗  ⊗

"
−1
−0−1

#


 =

"
−1
−0−1

#
⊗    =  ⊗

"
−1
−0−1

#
 and

∗ =

"
−1
−0−1

#
⊗  ⊗   

∗
 =  ⊗

"
−1
−0−1

#
⊗   

∗
 =  ⊗  ⊗

"
−1
−0−1

#
;

and ’s are the coefficients of the dummy variables in ’s:

1 = ∅
2 = (1  −1 1  −1 1  −1)0

3 = (11  1   1  −1)0

4 = (11  1   1  −1 1  −1)0

5 = (11  1   −11  −1  1  −1)0

6 = (11  1   −11  −1  ∗11  
∗
1   

∗
−11  

∗
−1  

∗
1  

∗
−1)

0

7 = (11  1−1  1  −1 11  1   −11  −1  ∗11  
∗
1−1 

∗1  
∗
−1)

0

Let 0 and 0 = (0 
0
) denote typical rows of  and , respectively, for  = 2  7 Let

1 =  and 1 = . It is easy to verify that

 ⊥  ⊥    ⊥   
∗
 ⊥   and ∗ ⊥ ∗ ⊥ ∗ 

where  ⊥  means that  and  are orthogonal (0 = 0 and 0 = 0) and  ⊥  ⊥  means  

and  are mutually orthogonal to each other. With such an orthogonal property, it is easy to calculate the

inverses of 0
 and 0 for  = 2  7

Throughout the paper, we will calculate various sample means. Define

·· =
1



X
=1

X
=1

 ·· =
1



X
=1

X
=1

 ·· =
1



X
=1

X
=1



· =
1



X
=1

 · =
1



X
=1

 · =
1



X
=1

 and  =
1



X
=1

X
=1

X
=1



Let ·· ·· ·· · · · and  be defined analogously.

3 Methodology and Asymptotic Theory

In this section, we first introduce the jackknife method to determine the different types of fixed effects in

3-D panels. Then we introduce the assumptions that are needed for our asymptotic analysis and report the

consistency of the jackknife method.
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3.1 The jackknife method

The OLS estimator of  =
¡
0 0

¢0
in Model  based on all  observations is given by

̂ =
³
̂
0
 ̂

0


´0
= (0)

−1
0 for  = 1 2  7

We will also consider the leave-one-out estimator of  with the (  )th observation deleted from the sample:

̂ =
³
̂
0
 ̂

0


´0
=
¡
0 − 

0


¢−1
(0 − ) for  = 1 2  7

where  = 1    = 1  and  = 1   The out-of-sample predicted value for  is defined as

̂ = 0̂ = 0̂+0̂. Our jackknife method is based on the following leave-one-out

cross-validation (CV) function:

 () =
1



X
=1

X
=1

X
=1

( − ̂)
2 for  = 1 2  7

We propose to choose a model such that  () is minimized. Define

̂ = argmin
1≤≤7

 () 

We will show that under some regularity conditions, ̂ is given by the true model with probability approaching

1 (w.p.a.1) when we assume that Models 1-7 contain the true model.

Remark 1. For certain dynamic panel models (such as Models 3, 4 and 7), bias correction can be needed

for the inference purpose contingent upon the rates at which   and  pass to infinity. Nevertheless, our

purpose here is to determine the type of fixed effects. We show that our method can consistently select the

true model without the need for bias correction. Given the selected model, one can consider bias correction

as needed to make inferences.

Remark 2. In this paper, we focus on how to conduct model selection and do not consider the post-selection

inference issue. In practice, one can conduct pointwise inferences based on the selected model. But it is well

known that inferences based on the selected model may not be uniformly valid; see, e.g., Leeb and Pötscher

(2005). It is challenging to conduct post-selection uniformly valid inferences. We leave this important issue

for future research.

3.2 Asymptotic theory under weak serial and cross-sectional dependence

Let ̂ = 1


 0
 for  = 2  7 and ̂1 =

1


 0. Let max = max166166166 

and
P

 =
P

=1

P
=1

P
=1. Similarly, let

P
 

P

P


P


P

  and
P

 abbreviate
P

=1

P
=1P

=1

P
=1

P
=1

P
=1

P
=1

P
=1 and

P
=1 respectively. To report the asymptotic property of the

jackknife method, we introduce some assumptions.

Assumption A.1 (i) () = 0 max(
2
)   for some positive constant, and 1



P
 

2


→ 2  0;

(ii) max |||| = (( )
14
);
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(iii) 1


P
 

8
 =  (1) and

1


P
 ||||8 =  (1);

(iv)  = (( )−12) and 1


 0 = (( )−12);

(v) There exist positive constants  and  such that  ( ≤ min(̂) ≤ max(̂) ≤ ) → 1 for

 = 1  7

Assumption A.2. There are finite positive constants 2  = 1 2  6 such that

(i) 


P
 

2
··

→ 21;

(ii) 


P
 

2
··

→ 22;

(iii) 


P
 

2
··

→ 23;

(iv) 


P
 

2
·

→ 24;

(v) 


P
 

2
·

→ 25;

(vi) 


P
 

2
·

→ 26

Assumption A.3 (i) 1


P
(·· − )(·· − )0 = (( )−1);

(ii) 1


P
(·· − )(·· − )0 = (( )−1);

(iii) 1


P
(·· − )(·· − )0 = (()−1);

(iv) 1


P
(· − )(· − )0 = (

−1);

(v) 1


P
(· − )(· − )0 = (

−1);

(vi) 1


P
(· − )(· − )0 = (

−1)

Assumption A.4 (i) If Model 2 is the true model, there exist positive constants 2 for  = 1 3 5

such that 1


P
 (2)

2 → 2 and 1


P
 2

→ 0 where 2 =  +  +  −
0(

0
)

−1
0
22;

(ii) If Model 3 is the true model, there exist positive constants 3 for = 1 2 5 6 such that 1


P


(3)
2 → 3 and 1



P
 3

→ 0 where 3 =  − 0(
0
)

−1033;

(iii) If Model 4 is the true model, there exist positive constants 4 for  = 1 2 3 5 6 such that
1



P
 (4)

2 → 4 and
1



P
 4

→ 0 where 4 = +−0(0)−1 044;

(iv) If Model 5 is the true model, there exist positive constants 5 for  = 1 2 3 4 such that
1



P
 (5)

2 → 5 and 1


P
 5

→ 0 where 5 = ∗ − 0(
0
)

−10
×55;

(v) If Model 6 is the true model, there exist positive constants 6 for  = 1 2 3 4 5 such that
1



P
 (6)

2 → 6  0 and 1


P
 6

→ 0 where 6 = +
∗
−0(0)−1

×066;

(vi) If Model 7 is the true model, there exist positive constants 7 for  = 1 2 3 4 5 6 such that
1



P
 (7)

2 → 7 and
1



P
 7

→ 0 where 7 = ++
∗
−0(0)−1

×077

Assumption A.1(i)-(ii) imposes weak conditions on {} and {}  which can be verified under various
primitive conditions. For example, a sufficient condition for A.1(ii) is that max kk4 ≤   ∞.
Assumption A.1(iii) is imposed to ease the proof of Lemmas A.13 and A.14 in Appendix A and can be

relaxed at the cost of more lengthy arguments. Assumption A.1(iv) is weak and commonly assumed in panel

data models in the absence of endogeneity. Note that we permit  to contain lagged dependent variables so

that dynamic panel data models are allowed. Assumption A.1(v) specifies the usual identification conditions
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for the fixed effects (FE) estimation of Models 1-7. Using Lemmas A.2-A.3 in Appendix A, we can readily

verify that ̂ =
1



P
 ̆

()
 ̆

()0
 where

̆
(2)
 =  − (·· − )− (·· − )− (·· − ) 

̆
(3)
 =  − (· − ) 

̆
(4)
 =  − (·· − )− (·· − ) 

̆
(5)
 =  − (· − ) 

̆
(6)
 =  − (· − ··)− (· − )

̆
(7)
 =  − (· − ··)− (· − ··)− (· − ··) 

Apparently, it is fine to allow  to contain the constant term because of the location identification restric-

tions imposed in Models 2-7. On the surface, when all seven models are under consideration,  cannot

contain a nonconstant term that is only varying over two of the three indices. In other words,  needs

to vary over all three dimensions. Otherwise, it can be absorbed into fixed effects and its slope coefficient

cannot be estimated using the fixed effect regression. One simple example of  that only varies over two

dimensions is the geographic distance () between country  and country  which is typically time-invariant.

If  contains such regressors, we could consider two approaches. First, one can consider a small subset of

the seven models to incorporate certain regressors that have variations only along one or two dimensions.

Second, we can incorporate such regressors into the fixed effects in the corresponding model, perform the

model selection as usual and then consider the estimation of the marginal effect of such regressors in the

estimation step. For example, if other than the usual regressors in  that vary over   and  in Models

1—7, we also want to include  as a regressor in these models. Now we are considering the seven models as

follows:

Model 1 :  = 0 + + 

Model 2 :  = 0 + +  +  +  + 

Model 3 :  = 0 + +  + 

Model 4 :  = 0 + +  +  + 

Model 5 :  = 0 + + ∗ + 

Model 6 :  = 0 + +  + ∗ + 

Model 7 :  = 0 + +  +  + ∗ + 

In this case, we have an identification problem in Models 3, 4 and 7 because it is impossible to separately

identify  and  without further restrictions. Nevertheless, effectively, we can rewrite Models 3, 4 and 7

respectively as

Model 30 :  = 0 + ̃ + 

Model 40 :  = 0 + ̃ +  + 

Model 70 :  = 0 + ̃ +  + ∗ + 

where ̃ = +   One can continue to apply our jackknife method to select among Models 1, 2, 3
0, 40

5, 6 and 70 by comparing the out-of-sample predictability.3

3 If any one of Models 1, 2, 5, and 6 is selected, then there is no problem to identify  along with . However, we cannot

identify  directly in Models 3, 4 and 7 from the usual fixed-effects estimation procedure when Model 30, 40 or 70 is selected.
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Assumption A.2 requires that {} be weakly dependent along either one of the three dimensions. For
example, Assumption A.2(iv) essentially requires that





X


(2·) =
1



X


X
=1

X
=1

 ()

should have a finite limit 24 The latter condition is satisfied by the Davydov inequality if {  ≥ 1} is
strong mixing with finite (2 + )-th moment and mixing coefficients  (·) such that  () = − for some

  (2 + ) ; see, e.g., Bosq (1998, pp.19-20) or the online supplement of Su, Shi, and Phillips (2016). For

another example, Assumption A.2(i) requires that {} be weakly cross-sectionally dependent along the -
dimension and weakly serially dependent as well such that 



P
=1(

2
··) =

1


P
=1

P
=1

P
=1

P
=1

P
=1

 () has a finite limit 
2
1 In the special case where  is not correlated along either one of the three

dimensions, we can easily verify that 2 = 2 for  = 1  6 In the presence of serial or cross-sectional

correlations, 2’s are generally different from 2.

Similarly, Assumptions A.3 requires that {} be weakly dependent along either one of the three di-
mensions. The conditions in this assumption can be verified via the Chebyshev or Markov inequality under

some conditions to ensure such weak dependence. For example, to verify Assumption A.3(iv), by the Cauchy-

Schwarz inequality it is sufficient to verify each diagonal element of 1


P
(·− )(· − )0 is (

−1)

Let  be a  × 1 vector that contains 1 in its th place and zeros elsewhere where  = 1  . Then

 =
1



X


0(· − )(· − )0

=
1



X


0[· − (·)][· − (·)]0 − 2



X


0[· − (·)][− (·)]0

+
1



X


0 [− (·)] [− (·)]0

≡  (1)− 2 (2) +  (3)  say.

Then  = (
−1) provided  [ ()] = (−1) for  = 1 2 3 by the Markov inequality. Again, the latter is

true under some weak dependence conditions. For example, if {  ≥ 1} is strong mixing satisfying certain
mixing rate and moment conditions, then  [ (1)] =

1
2

P


P
=1

P
=1Cov(

0
 

0
) = 

¡
−1

¢


Similar claims hold for  (2) and  (3)  Note that Assumptions A.1(iii)-(iv), A.2, and A.3 imply the following

results:

(i) 1


P
 ···· = (( )−12 + ( )

−1
);

(ii) 1


P
 ···· = (( )−12 + ( )

−1
);

(iii) 1


P
 ···· = (( )−12 + ()

−1
);

(iv) 1


P
 ·· = (( )−12 + −1);

(v) 1


P
 ·· = (( )−12 +−1);

(vi) 1


P
 ·· = (( )−12 +−1)

In this case, we could consider the following two-step post-selection procedure to estimate  if needed: 1) In the first step, we

obtain the consistent estimator ̂ of ̃ based on Model 3
0, 40 or 70 whichever is selected; 2) In the second step, we run a

linear regression of ̂ on  to estimate  under the additional identification restriction that  and  are uncorrelated. Of

course, one must take into account the estimation error from the first stage when making inference on We leave the systematic

study of this issue to future research.
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For example, (i) holds because by the triangle and Cauchy-Schwarz inequalities and Assumptions A.1(iii)-(iv),

A.2(i) and A.3(i) we have¯̄̄̄
¯ 1 X



0····

¯̄̄̄
¯ =

¯̄̄̄
¯ 1 X



0 (·· − )·· + 0

¯̄̄̄
¯

≤
(
0
1



X


(·· − ) (·· − ) 0

)12(
1



X


2··

)12
+ k0k ||

= (( )−12)(( )−12) +(( )−12)

Assumption A.4 specifies conditions to ensure that the under-fitted models will never be chosen asymp-

totically. The interpretations of the positive probability limit conditions in Assumption A.4 are easy. For

example, when Model 2 is the true model, Models 1, 3, and 5 are under-fitted. In this case, the positiveness

of 2 requires that the additive fixed effects  +  +  when stacked into an  × 1 vector, should
not lie in the space spanned by the columns of the regressor matrix  in Model  for  = 1 3 and 5,

where we recall that 1 = . Similarly, the zero probability limit conditions in Assumption A.4 require that

the interactions between the idiosyncratic error terms and the fixed effects in the under-fitted models are

asymptotically negligible.

Note that we allow for both weak cross-sectional and serial dependence of unknown form in {( )}
even though some results derived below need further constraints. We do not need identical distributions or

homoskedasticity along either one of the three dimensions, neither do we need to assume mean or covariance

stationarity along either dimension. In this sense, we say our results below apply to a variety of 3-D linear

panel data models in practice.

Given Assumptions A.1-A.4, we are ready to state our first main result.

Theorem 3.1 Suppose that Assumptions A.1-A.4 hold. Suppose that max1≤≤6{2}  22 where 2

and 2 are defined in Assumptions A.1(i) and A.2, respectively. Then as (  )→∞

 (̂ = ∗| Model ∗ is the true model)→ 1 for ∗ = 1  7

Theorem 3.1 indicates that we can choose the correct model w.p.a.1 as (  ) → ∞ under some

additional side conditions on 2’s. Despite the complication in the asymptotic analysis of general 3-D

models, the idea that outlines the proof of the above theorem is simple. When Model 1 is the true model

(which is unlikely in practice), all the other models are over-fitted; when Model 7 is the true model, all other

models are under-fitted. For ∗ ∈ {2 3 4 5 6}  when Model ∗ is the true model, we need to classify other
models into either the under-fitted category or the over-fitted category. If we use ∗ to denote  ()

when Model ∗ is the true model and Model  is used for the cross-validation, we can show that

∗ − ∗∗
→ ∗  0

for Model  that is under-fitted with respect to Model ∗. The limits ∗ are defined in Assumption A.4.

On the other hand, when Model is over-fitted with respect to Model∗ unsurprisingly ∗−∗∗
converges to 0 in probability, and we need to blow it up by a term that is divergent with (  ) and depends
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on (∗) in order to obtain a positive probability limit. That is, for some ∗ ≡ ∗(  ) we

have

∗ [∗ − ∗∗ ]
→ ∗  0

where ∗ →∞ as (  )→∞ and ∗ are constants that are always positive whenmax1≤≤6{2}
 22 is satisfied. For example, when Model 2 is the true Model, it is easy to see that Models 1, 3, and 5

are under-fitted and Models 4, 6, and 7 are over-fitted. In this case, we have

2 − 22
→ 2  0 for  = 1 3 5

 (24 − 22)
→ 22 − 24  0

( ∧) (26 − 22)
→ 6(2

2
 − 26) + 7(2

2
 − 25)  0

( ∧ ∧  )(27 − 22)
→ 8(2

2
 − 24) + 9(2

2
 − 25) + 10(2

2
 − 26)  0

where  ∧ = min ()  6 = lim()→∞(1 ∧ 

) 7 = lim()→∞(1 ∧ 


) 8 = lim( )→∞

(1 ∧ 

∧ 


) 9 = lim( )→∞(1 ∧ 


∧ 


) and 10 = lim( )→∞(1 ∧ 


∧ 


) As a result, we have

 (̂ = 2 | Model 2 is the true model)→ 1 as (  )→∞

The side condition on 2 and 
2
 in Theorem 3.1 essentially says that we cannot have too much serial or

cross-sectional correlation among the error terms. It is automatically satisfied if ’s are uncorrelated across

all the    dimensions. When {  ≥ 1} follows an AR(1) process, we can follow Lu and Su (2019a) and
demonstrate that this side condition requires that the AR(1) coefficient should lie in the interval (−1 13).
If one doubts that strong serial correlations might be present, then we can consider the modified jackknife

method in the next section. Similarly, if the cross-sectional dependence along the  and  dimensions is weak,

such a side condition would be satisfied. When one suspects of strong cross-sectional dependence, one can

model it, say, by extending the analysis of 2-D panels with multifactor error structure in Pesaran (2006), Bai

(2009), and Lu and Su (2016) to that of 3-D panels. But this is certainly beyond the scope of the current

paper.

Note that we do not need any relative rate conditions on how   and  pass to infinity. Our theory

works even if  is proportional to log or log and vice versa. Of course, the proof of the above theorem

can be greatly simplified if one would like to impose conditions such that  ()2 → 0  ( )2 → 0

and  ( )2 → 0 as (  )→∞

4 Methodology and Theory in the Presence of Strong Serially Cor-

related Errors

In this section we propose a modified jackknife method to choose different types of fixed effects when the

error terms exhibit strong serial correlation, and then justify its consistency.

4.1 The modified jackknife method

To allow strong serial correlation among the error terms, we assume that {  ≥ 1} can be approximated
by an AR() process:

 = 1−1 + 2−2 + + − +  = 0−1 +  (4.1)
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where  = 1   = 1   =  + 1    = (1  )
0 is a vector of unknown parameters,

−1 = (−1  −)
0, and  is a zero mean innovation term.

We propose to obtain a consistent estimate of  based on the OLS residuals from the largest model under

consideration: ̂
(7)
 =  − 07̂7 Given ̂

(7)
  we run the following AR() regression to estimate  :

̂
(7)
 = 1̂

(7)
−1 + 2̂

(7)
−2 + + ̂

(7)
− + ∗ = 0̂(7)−1 + ∗

where  = 1    = 1   = +1   ̂−1 = (̂−1  ̂−)
0 and ∗ = 0(−1− ̂(7)−1)+

 Let the ̂ = (̂1  ̂)
0 be the OLS estimator from the above regression. Let 

−1 = (−1  −)
0

and ̂()
−1 = (̂

()
−1  ̂

()
−)

0 Then we consider the following modified CV function:

 ∗ () =
1



X
=1

X
=1

X
=+1

h
( − ̂0

−1)− (̂
()
 − ̂0b()

−1)
i2


where  =  −  Define

̃ = argmin
1≤≤7

 ∗ () 

When Model  is the true model, we expect that ( − ̂0
−1)− (̂

()
 − ̂0b()

−1) will approximate the

true innovation term  and  (̃ = ) → 1 as ( ) →∞ as long as the correlation among {} is
weak.

To proceed, define

Φ() = 1− 1− 2
2 − − 



where  is the lag operator. Let ̃
()
 = Φ()

()
 for  =  + 1   and  = 1  7 Let ·· =

1


P
=1

P
=+1  ·· =

1


P
=1

P
=+1  · =

1


P
=+1   =

1


P
=1

P
=1

P
=+1 

Define ·, ·, and ·· analogously to ·, ·, ·· For notational simplicity, we will write
P

=1

P
=1

P
=+1

and max1≤≤1≤≤+1≤≤ as
P

 and max respectively, in this section.

4.2 Asymptotic theory under strong serial dependence

To state the next result, we add the following set of assumptions.

Assumption A.5 (i) All the roots of Φ() lie outside the unit circle;

(ii) () = 0, max(
2
) ≤ , and 1



P
 

2


→ ̄2  0;

(iii) 1


P
(kk2 2) = (1);

(iv) 1


P
  = (( )−12) for  = 1  −  − for  = 1  

Assumption A.6 There are positive finite numbers 2  = 1 2  6 such that

(i)



P
 

2
··

→ 21;

(ii)



P
 

2
··

→ 22;

(iii) 


P
=+1 

2
··

→ 23;

(iv)



P
 

2
·

→ 24;

(v) 


P


P
=+1 

2
·

→ 25;

(vi) 


P


P
=+1 

2
·

→ 26
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Assumption A.7 (i) If Model 2 is the true model, there exist positive constants ∗2 for  = 1 3 5

such that 1


P
(

∗
2)

2 → ∗2 and 1


P
 

∗
2

→ 0 where ∗2 = Φ(1)
¡
 + 

¢
+

Φ() − ̆0(
0
)

−1 022;

(ii) If Model 3 is the true model, there exist positive constants ∗3 for = 1 2 5 6 such that 1


P
(

∗
3)

2

→ ∗3 and 1


P
 

∗
3

→ 0 where ∗3 = Φ(1) − ̃0(
0
)

−1033;

(iii) If Model 4 is the true model, there exist positive constants ∗4 for  = 1 2 3 5 6 such that
1



P
(

∗
4)

2 → ∗4 and
1



P
 

∗
4

→ 0 where ∗4 = Φ(1)+Φ()−̃0(0)−1
044;

(iv) If Model 5 is the true model, there exist positive constants ∗5 for  = 1 2 3 4 such that
1



P
(

∗
5)

2 → 5 and
1



P
 

∗
5

→ 0 where ∗5 = Φ()
∗
−̃0( 0)−1055;

(v) If Model 6 is the true model, there exist positive constants ∗6 for  = 1 2 3 4 5 such that
1



P
(

∗
6)

2 → ∗6  0 and 1


P
 

∗
6

→ 0 where ∗6 = Φ()( + ∗) −
̃0(

0
)

−1066;

(vi) If Model 7 is the true model, there exist positive constants ∗7 for  = 1 2 3 4 5 6 such that
1



P
(

∗
7)

2 → ∗7 and 1


P
 

∗
7

→ 0 where ∗7 = Φ(1) + Φ()( + ∗) −
̃0(

0
)

−1077

Assumptions A.5-A.6 and A.7 parallel Assumptions A.1-A.2 and A.4, respectively. Note that under

Assumptions A.1(iii)-(iv), A.3, and A.6, we also have the following relationships:

(i) 1


P
 ···· = (( )−12 + ( )

−1
);

(ii) 1


P
 ···· = (( )−12 + ( )

−1
);

(iii) 1


P
=+1 ···· = (( )−12 + ()

−1
);

(iv) 1


P
 ·· = (( )−12 + −1);

(v) 1


P


P
=+1 ·· = (( )−12 +−1);

(vi) 1


P


P
=+1 ·· = (( )−12 +−1)

The following theorem states the main result in this section.

Theorem 4.1 Suppose Assumption A.1-A.3 and A.5-A.7 hold. Suppose that max(21  
2
6)  2

2
. Then

as (  )→∞

 (̃ = ∗ | Model ∗ is the true model)→ 1 for ∗ = 1  7

Theorem 4.1 indicates that the modified jackknife method helps to choose the correct model under the

weaker side condition max(21  
2
6)  22 When there is no serial correlation among {} such that

Φ(1) = Φ() = 1 and  =  then 2 = 2 and 2 = 2 That is, the result in Theorem 4.1 now

coincides with that in Theorem 3.1.

Note that we do not require {  ≥ 1} to exactly follow the AR() process. Essentially we prewhiten
the error process via the AR() filtering with the expectation that the serial correlation among {  ≥ 1}
will be sufficiently reduced after this procedure.
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5 Monte Carlo Simulations

In this section, we examine the finite sample performance of our jackknife and modified jackknife methods.

We compare them with the commonly used information criteria: AIC and BIC.4 Specifically, let ̂ =

− 0̂ = − (0̂+ 0̂) be the in-sample residual for Model  where  = 1  7 Then

AIC and BIC are defined respectively as

 () = ln
³
(̂())2

´
+

2




 () = ln
³
(̂())2

´
+
log ( ) 




where (̂())2 = 1


P
=1

P
=1

P
=1(̂)

2 and  is the dimension of (
0
 

0
)

0. In the simulations,

we find that BIC performs poorly, so we also modify BIC slightly as

2 () = ln
³
(̂())2

´
+
log(log ( ))




We consider the three different types of DGPs: () static panels, () dynamic panels without exogenous

regressors, and () dynamic panels with exogenous regressors. For static panels, we allow serial correlation

in the error terms. We consider the different combinations of (  ) = (10 10 5)  (20 20 5)  (10 10 10) 

(10 10 20) and (20 20 20)  The number of replications is 1000.

5.1 Static panels

We consider seven static panel DGPs that correspond to Models 1-7 in (1.1), where  contains a constant

and a scalar random variable, say, ̃ and the corresponding true  is [1 1]
0
. All fixed effects, namely,

       and 
∗
 are IID  (0 1) random variables. To allow the correlation between ̃ and fixed

effects, ̃’s are generated in DGPs 1-7 respectively as

DGP 1 : ̃ = 1 +  DGP 2 : ̃ = 1 +  +  +  + 

DGP 3 : ̃ = 1 +  +  DGP 4 : ̃ = 1 +  +  + 

DGP 5 : ̃ = 1 + ∗ +  DGP 6 : ̃ = 1 +  + ∗ + 

DGP 7 : ̃ = 1 +  +  + ∗ + 

(5.1)

where ’s are IID  (0 1). To allow serial correlation in the error term,  is generated as

 = −1 + 

where ’s are IID  (0 1). We consider  = 0 14  and
3
4 , which correspond to no, weak and strong serial

correlations, respectively. As discussed above, if  follows an AR(1) process, our jackknife method only

works for  ∈ (−1 13) Hence,  = 1
3 corresponds to the cut-off point for our jackknife method to work, so

we also consider  = 1
3 in the simulation. The simulation results for  = 0

1
4 

1
3 and

3
4 are reported in Tables

3A-3D, respectively.

4To the best of our knowledge, there is no theoretical justification for AIC and BIC in the context of determining fixed effects

in 3-D panels. In fact, we are not aware of any systematic study of alternative approaches in our context.
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We first consider  = 0 i.e., there is no serial correlation. Even in this case, BIC breaks down apparently.

For example, when the true model is Model 6 or 7 (M6 or M7), BIC chooses M1 with probability 1. For

the other four methods, namely, the AIC, modified BIC, jackknife, and modified jackknife (labeled as AIC,

BIC2 CV, and CV
∗ respectively in the table), we first consider the large  case (  5) All four methods

work well when   5. When the true model is M1, M2, M4, M5, M6, or M7, the four methods all select the

correct model with probability 1. When the true model is M3, the four methods all choose the correct model

with a probability larger than 0.9. Among the four methods, our jackknife (CV) method performs slightly

better than others. When  is small ( = 5) CV∗ performs poorly. This suggests that a large sample is

required for CV∗ to work.

We next consider  = 1
4  We first examine the large  case when   5 Our modified jackknife (CV∗)

performs best and jackknife (CV) performs slightly worse. But both outperform AIC and BIC2 For example,

when the true model is M6 and (  ) = (10 10 10), CV∗, CV, AIC and BIC2 select the correct model

with probabilities of 1, 0.93, 0.36 and 0.28, respectively. Again, in this case, BIC breaks down. When  is

small ( = 5), again we find that the performance of CV∗ is poor.

When  = 1
3  only our modified jackknife (CV

∗) works for the large  case (  5). For example, when the

true model is M6 and (  ) = (10 10 10)  CV∗ CV, AIC, BIC2 and BIC select the correct model with

probabilities of 1, 0.61, 0.07, 0.04 and 0, respectively. In general, the simulation results confirm our asymptotic

theories. For example, as we discuss after Theorem 3.1, when the true model is M2,  (24 − 22)
→

22 − 24 which equals 0 when  = 1
3  This suggests that our jackknife (CV) method cannot distinguish

Models 2 and 4 in this case. Correspondingly, in the simulations, we find that CV selects the M2 and M4

with probabilities of 0.56 and 0.44, respectively when the true model is M2 and (  ) = (20 20 20) 

When  is small ( = 5), no method works well.

When  = 3
4  again only the modified jackknife (CV

∗) performs well when   5. For example, when the

true model is M5, CV∗ selects the correct model with probability 1, while all other methods with probability

0. When  = 5 no method seems to work.

In sum, for these static panel DGPs, our jackknife performs the best in the absence of serial correlation.

Our modified jackknife performs the best in the presence of serial correlation when  is relatively large.

When  is small ( = 5) and serial correlation is strong, no method works well.

5.2 Dynamic panels without exogenous regressors

We consider seven AR(1) dynamic panel DGPs. In this case, we cannot allow for serial correlation in the

error terms as it will result in the endogeneity issue so that the FE estimates are biased and the IV/GMM

estimates are generally needed. Specifically, we consider seven DGPs as Models 1-7 in (1.1) where 

contains a constant and the lagged dependent variable −1 and the corresponding true  is (1 075)0 All

the fixed effects (       and ∗) and ’s are IID  (0 1) random variables.

The simulation results are reported in Table 4. It shows that our jackknife method performs the best,

followed by AIC and BIC2 BIC performs the worst. For example, when the true model is M6 and (  ) =

(10 10 10)  CV, AIC, BIC, and BIC2 select the correct model with probabilities of 0.98, 0.46, 0.42 and 0.37,

respectively. When  is large (  5), our jackknife method can select the true model with probabilities

larger than 0.90.
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5.3 Dynamic panels with exogenous regressors

We consider seven dynamic panel DGPs with multiple exogenous regressors. The DGPs are the same as

described in Models 1-7 in (1.1) where  is a 7×1 vector. The first element of  is constant. The second
is the lagged dependent variable −1 The third is a random variable as in (5.1) and the rest four elements

are IID  (0 1) random variables. The corresponding true  is (1 075 02  02)0 All fixed effects and 
are IID  (0 1) random variables.

Table 5 presents the simulation results. Again, in general, our jackknife dominates other methods. It can

select the true model with probabilities larger than 0.90 when  is large (  5). The performance of AIC

is similar to that of the jackknife except when the true model is M6, in which case the jackknife outperforms

AIC significantly. BIC2 is worse than the jackknife and AIC, but still better than BIC.

6 Empirical Applications

In this section, we provide two empirical applications of our new methods.

6.1 Technology and contractions

We apply our new method to study how technological characteristics interact with business cycles as in

Samaniego and Sun (2015, SS hereafter). Specifically, SS are interested in examining which technological

characteristics lead industries to experience the most difficulty during the recession period. Their main

estimation equation corresponds to our Model 7 (using our notation):

 = 0 + 1 ( ×) + 2 +  +  + ∗ + 

where  is a measure of growth in industry  in country  at year   is a binary variable,

which equals 1 if country  is in a contraction in year   is an industry technological characteristic, and

 is a control variable.

SS consider three measures of the growth variable, : () value added (the log changes in industry

value added), () output (the log changes in gross output) and () output index (the log changes in

the Laspeyres production index). There are ten measures of the industry characteristic,   () external

finance dependence (EFD), () depreciation (DEP), () investment-specific technical change (ISTC), ()

R&D intensity (RND), () human capital intensity (HC), () labor intensity (LAB), () fixity (FIX),

() investment lumpiness (LMP), () relationship-specific investment (SPEC), and () intermediate inputs

intensity (INT). The control variable is the share of the industry value added out of the manufacturing

industry at year −1 For the detailed explanations of these variables, see SS (Section 3). The dataset covers
139 countries and 28 manufacturing industries from 1970 to 2007. Hence, (  ) = (139 28 38)  There

are a large number of missing values. The exact total sample size depends on the dependent variable. For

example, there are 57,115 observations for the value added growth. SS adopt the largest model (Model 7).

Using a too large model can result in substantial estimation efficiency loss. Here it is an interesting question

to decide which model is the most appropriate among the seven models considered above.
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As in SS’s Table 5, we first run the growth regression using one measure of growth () as

the dependent variable and the interaction term between one measure of industry characteristic () and

contraction as the key regressor. Therefore, the dimension of the regressors is  = 3 (including the constant

and control variable). We consider a total of 30 different combinations of  and  It is interesting

to find that for all the 30 regressions, the jackknife, modified jackknife, AIC, and BIC2 all select Model 6,

while BIC selects Model 2. Table 6A also contains the estimates of 1 and its 95% confidence intervals (CI)

for all seven models. Based on the selected Model 6, the estimate of 1 is -0.013 with a 95% CI of [-0.0242,

-0.0018]. To save space, we only report the numerical results for  being value added and  being

EFD in Table 6A. The results for the other 29 regressions are available upon request.

We also run three regressions by including all the ten industry characteristics for the three dependent

variables. Hence, the number of the regressors is  = 12 (including the constant and control variable). Again,

for all three regressions, the jackknife, modified jackknife, AIC and BIC2 all select Model 6, while BIC selects

Model 2. The numerical results for  being value added are reported in Table 6B. Based on the

selected Model 6, the estimate of 1 is -0.0163 with a 95% CI of [-0.0439, 0.0113]. The results for other two

regressions are available upon request.

Considering the poor performance of BIC in the simulations, we conclude that Model 6 is an appropriate

model for this application. Recall that Model 6 only includes  and ∗ as fixed effects. This suggests that

after including the country-time and industry-time effects, it is redundant to include country-industry effects.

6.2 Gravity equations in international trade

Gravity equations are widely used to model bilateral trade. It is basically assumed that the bilateral trade

volumes depend on the economic sizes (often using GDP measurements) and distance between two economies,

which mirrors the physical gravity equation. For a review on gravity models, see Head and Mayer’s (2014)

chapter in the Handbook of International Economics. Different fixed effect models have been applied to

estimate gravity equations, as we have discussed in Section 2 above.

We apply our new method to determine the fixed effect specifications in bilateral trade data. We first

consider one basic gravity equation:

ln () = 0 + 1 ln ( +) + fixed effects+ 

where  is the export of country  to country  in year  and GDP and GDP are the GDPs

of countries  and  respectively at year  fixed effects are specified as in our Models 1-7 in (1.1). Here

 +  represents the total economic size of country  and country . Baltagi et al. (2003) also

consider the same form of regressors. Note that we do not include the distance between country  and country

 as a regressor, as the distance is time-invariant and its effect is not identified under our Models 3, 4 and 7.

The sample includes 35 OECD countries over 58 years (1949-2006). Thus, here  = 35  = 34 and  = 58

With missing values, the total sample size is 48,403. The data are obtained from the companion website of

Head and Mayer (2014). For this regression, we find that the jackknife, modified jackknife, AIC, and BIC2

all select Model 7 as the correct model, while BIC selects Model 4. The numerical results are shown in Table

7A. We also report the estimate and 95% CI for 1 for all seven models. Based on the selected model, the

estimate of 1 is 0.657 and its 95% CI is [0.577, 0.738].
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We also modify the equation above by adding the population variables, i.e., we consider

ln () = 0 + 1 ln ( +) + 2 ln ( + ) + fixed effects+ 

where  and  are populations of countries  and  in year  Again, the jackknife, modified

jackknife, AIC, and BIC2 all select Model 7, while BIC selects Model 4, as shown in Table 7B. Based on the

selected Model 7, the effects of GDP and population are both positive and statistically significant.

We conclude that for gravity models, all fixed effects    and ∗ are important, which suggests that

there is substantial unobservable heterogeneity in the bilateral traded data.

7 Conclusion

In this paper, we propose a jackknife method to choose between a subset of 3-D panel data models with

fixed effects that are widely used in the literature. We show that the method can consistently select the true

model when the serial or cross-sectional correlations in the error terms are not strong. In the case where the

error terms exhibit the strong serial correlation, we propose a modified jackknife method. Simulations are

conducted to evaluate the finite sample performance of our methods. We apply our methods to two datasets

to study the interaction between technological characteristics and business cycles and the gravity equations

in international trades.

There are several interesting issues for future research. First, we can consider a broader class of 3-D

panel models and conjecture that our theory continues to hold under some regularity conditions. Second,

even though we only focus on balanced panels for notational simplicity, we remark that our theories for the

unbalanced panels are still valid with obvious modifications. In particular, we now need thatmin1≤≤ 

and min1≤≤1≤≤
 pass to infinity jointly. Third, we only propose a modified jackknife method to

handle strong serial correlations and it is not clear how to take into account strong cross-sectional correlations.

If one believes that the strong cross-sectional correlation may be present in the error terms, we may consider

the use of a multi-factor error model from the scratch. The problem is that there exist many ways to model

cross-sectional dependence in 3-D models. Recently, Lu and Su (2019b) have studied a 3-D factor model that

contains one type of global factors and two types of local factors. As one can imagine, it is highly challenging

to determine the number of global and local factors in such a factor model, not to mention the estimation

and inference on the factors and factor loadings. When we include regressors in the above 3-D factor model,

the issue becomes even harder and we are not sure whether one can apply the jackknife idea to determine

what kinds of fixed effects should be included in the model. We leave these topics for future research.
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Appendix

A Proof of Theorem 3.1

In this appendix, we first state some technical lemmas that are used in the proof of Theorem 3.1. The proof
of Theorem 4.1 is relegated to Appendix B in the online supplement. The proofs of all technical lemmas are

given in Appendix C of the online supplement. Let
P
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−1 + ( )−12)
(v) 1


 06 = (

−1 +−1 + ( )
−12

)

(vi) 1


 07 = (
−1 +−1 + −1 + ( )−12)

Lemma A.5 Let  be a typical element of  for  = 2  7. Then
(i) 02(

0
22)

−12 = 1


+ 1


+ 1

− 3




(ii) 03(
0
33)

−13 = 1

− 1




(iii) 04(
0
44)

−14 = 1

+ 1


− 2




(iv) 05(
0
55)

−15 = 1

− 1




(v) 06(
0
66)

−16 = 1

+ 1


− 1


− 1




(vi) 07(
0
77)

−17 = 1

+ 1


+ 1


− 1


− 1


− 1



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Lemma A.6 Let  = 0(
0
)

−1 and  =
1

1− for  = 1  7 Let ∗ = [ −
 0(

0
)

−1]0 ∗
[ − 0(

0
)

−1] for  = 2  7 where ∗
= ( 0

)−1
Let ̄ = 0(

0
)

−1 for  = 2  7 which does not vary over (  ) by Lemma A.5. Let ̄1 = 0

and ∗1 = 0 (
0)−1  Suppose Assumption A.1(ii) and (v) holds. Then for  = 1  7 we have

(i)  = ̄ + ∗;
(ii) max  = (( )−12 + ̄) = (1);
(iii) max |1 − 1| = (1);

(iv) 2 − 1− 2 = 3−22
(1−)2 ·  and max

¯̄̄
3−22
(1−)2

¯̄̄
= (1);

(v) 2 − 1− 2 − 32 =
h
3−2
(1−)2 − 3

i
2 and max

¯̄̄
3−2
(1−)2 − 3

¯̄̄
= (1)

Lemma A.7 Suppose that the true model is  = 0 + ∗0
∗ + , with dummy matrix 

∗ = ∗ =
{∗} and coefficient vector ∗ = ∗  For the leave-one-out prediction ̂ using model  ∈ {1 2  7},
we have5

(i)  − ̂ =


1− where  is defined in Lemma A.6 and  =  − 0̂;
(ii)  =  +  +  where  =  − 0(

0
)

−10
  = ∗0

∗ −
0

∗


 0
∗∗ −0(0

)
−10


∗∗+0(

0
)

−10
∗

 0
∗∗ and  =

0(
0
)

−10
∗

 0
 − 0

∗


 0


(iii)
P


2
 =  0


P


2
 = ∗0∗0

(−)
∗∗

P


2
 =  0

×∗
 0


P

 =  0
(−)

∗∗
P

 = − 0
∗

× 0
 and

P
 = 0

Lemma A.8 Let  =
1



P
 

2
(

2
 + 2) for  = 1 2  7 Suppose that Assump-

tions A.1-A.3 hold. Then
(i) 1 = (( )−1)
(ii) 2 = (()−2 + ( )−2 + ( )−2 + ( )−1)
(iii) 3 = (

−2 + ( )−1)
(iv) 4 = (()

−2
+ −2 + ( )−1)

(v) 5 = (
−2 + ( )−1)

(vi) 6 = (
−2 +−2 + ( )−1)

(vii) 7 = (
−2 +−2 + −2 + ( )−1)

Lemma A.9 Let  =
1



P
 

2
(

2
+2+2) for  = 1 2  7 Suppose

Assumption A.1(v) holds. If Model  is just- or over-fitted, then  = 0

Lemma A.10 Suppose that Assumptions A.1 and A.2 hold. Let  = 1


P
 

2


2
 for  =

1 2  7 Then
(i) 1 =

1


P
 

2
 +(( )

−1
)

(ii) 2 = (1+
2


+ 2


+ 2


) 1


P
 

2
 − 1



P
 

2
··− 1



P
 

2
··− 1



P
 

2
··+(()−2+( )−2

+( )
−2
+ ( )−1)

(iii) 3 = (1 +
2

) 1


P
 

2
 − 1



P
 

2
· +(

−2 + ( )−1)
(iv) 4 = (1 +

2

+ 2


) 1


P
 

2
 − 1



P
 

2
· − 1



P
 

2
·· +(()−2 + −2 + ( )−1)

(v) 5 = (1 +
2

) 1


P
 

2
 − 1



P
 

2
· +(

−2 + ( )−1)
(vi) 6 = (1 +

2

+ 2


) 1


P
 

2
 − 1



P
 

2
· − 1



P
 

2
· +(

−2 +−2 + ( )−1)
(vii) 7 = (1+

2

+ 2


+ 2


) 1


P
 

2
− 1



P
 

2
·− 1



P
 

2
·− 1



P
 

2
·+(

−2+−2

+−2 + ( )−1)

5For Model 1, noting that 1 =  we implicitly define 1 = 0 1 =   and ∗ = (0)−1  In this case,
1 =  1 = ∗0

∗ − 0 (
0)−10∗∗ and 1 = −0 (0)−10
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Lemma A.11 Let  = 2


P
 

2
 ( +) and ∗ = 1



P
 

2


×2
 for  ∗ = 1 2  7 where model ∗ is the true model and model  is a fitted model. Suppose

that Assumptions A.1 and A.4 hold. If model  is under-fitted with respect to the true model ∗, then
(i)  = (1)

(ii) ∗
→ ∗

Lemma A.12 Let  = () and  = () be either  or  Suppose that Assumptions A.1-A.3 hold.
Then
(i) 1


0 (2 −4) = 1



P
 (· − )

¡
· − 

¢0
+(( )−1 + ( )−1) = 

¡
−1

¢


(ii) 1


0 (3 −4) = 1


P
 (·· − )

¡
·· − 

¢0
= (()−1)

(iii) 1


0 (3
−7

) = 1


P
(· − )(·− )0+ 1



P
 (· − )

¡
· − 

¢0
+(()−1

+( )−1 + ( )−1) = (
−1 +−1)

(iv) 1


0 (4 −7) = 1


P
(· − )(· − )0 + 1



P
 (· − )

¡
· − 

¢0
+(()−1

+( )−1 + ( )−1) = (
−1 +−1)

(v) 1


0 (5
−6

) = 1


P
(· − )(· − )0 +(()−1) = (

−1)
(vi) 1


0 (5 −7) = 1



P
(· − )(· − )0 + 1



P
(· − )(· − )0 +(()−1

+( )−1 + ( )−1) = (
−1 + −1)

(vii) 1


0 (6 −7) = 1


P
(· − )(· − )0 +(( )−1 + ( )−1) = (

−1)

Lemma A.13 Suppose that Assumptions A.1-A.3 hold. Then
(i) If Model 2 is the true model, 1



P
 

∗
4

¯̄
24 − 22

¯̄
= (

−1)
(ii) If Model 3 is the true model, 1



P
 

∗
4

¯̄
24 − 23

¯̄
= (()−1)

(iii) If Model 3 is the true model, 1


P
 

∗
7

¯̄
27 − 23

¯̄
= (

−1 +−1)
(iv) If Model 4 is the true model, 1



P
 

∗
7

¯̄
27 − 24

¯̄
= (

−1 +−1)
(v) If Model 5 is the true model, 1



P
 

∗
6

¯̄
26 − 25

¯̄
= (

−1)
(vi) If Model 5 is the true model, 1



P
 

∗
7

¯̄
27 − 25

¯̄
= (

−1 + −1)
(vii) If Model 6 is the true model, 1



P
 

∗
7

¯̄
27 − 26

¯̄
= (

−1)

Lemma A.14 Suppose that Assumptions A.1-A.3 hold. Let ̄ =  (
0
)

−1
 for = 1 2  7

Then
(i) If Model 2 is the true model, 24 ≡ 1



P


¯̄
∗4 − ∗2

¯̄
22 = (

−1)
(ii) If Model 3 is the true model, 34 ≡ 1



P


¯̄
∗4 − ∗3

¯̄
23 = (()−1)

(iii) If Model 3 is the true model, 37 ≡ 1


P


¯̄
∗7 − ∗3

¯̄
23 = (

−1 +−1)
(iv) If Model 4 is the true model, 47 ≡ 1



P


¯̄
∗7 − ∗4

¯̄
24 = (

−1 +−1)
(v) If Model 5 is the true model, 56 ≡ 1



P


¯̄
∗6 − ∗5

¯̄
25 = (

−1)
(vi) If Model 5 is the true model, 57 ≡ 1



P


¯̄
∗7 − ∗5

¯̄
25 = (

−1 + −1)
(vii) If Model 6 is the true model, 67 ≡ 1



P


¯̄
∗7 − ∗6

¯̄
26 = (

−1)

Proof of Theorem 3.1. We use ∗ to denote  () when Model ∗ is the true model. By

Lemma A.7, ∗ =
1



P
 

2


2
 =

1


P
 

2
(

2
 +

2
+

2
+2+

2+2) where  = ++When Model  is just- or over-fitted
with respect to the true Model ∗ we have, by Lemmas A.8-A.10,

∗ =  +  +
→ 2

We will show that in this case ∗ (∗ − ∗∗) → constant 0 as long as  6= ∗ where
∗ = ∗ ( )→∞ as (  )→∞ and it depends on the underlying true model (Model ∗)
and the fitted model (Model ).
On the other hand, when Model  is under-fitted with respect to Model ∗ by Lemmas A.8 and A.10-

A.11 we have
∗ =  + + +∗
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where  + = (1) and 
→ 2 for any  and ∗∗  0 It follows that

∗ − ∗∗ → lim
( )→∞

∗  0

The details are given below.
Case 1: Model 1 is the true model. In this case, Models 2-7 are all over-fitted and we have by Lemmas

A.8-A.10

11 = 1 +(( )
−1
)

12 = 2 +(()−2 + ( )−2 + ( )−2 + ( )−1)

13 = 3 +(
−2 + ( )−1)

14 = 4 +(()
−2
+ −2 + ( )−1)

15 = 5 +(
−2 + ( )−1)

16 = 6 +(
−2 +−2 + ( )−1)

17 = 7 +(
−2 +−2 + −2 + ( )−1)

Subcase 1a. For 12 − 11, we have

12 − 11 = 2

µ
1


+

1


+

1



¶
1



X


2 −
⎛⎝ 1



X


2·· +
1



X


2·· +
1



X


2··

⎞⎠
+(()−2 + ( )−2 + ( )−2 + ( )−1)

and
( ∧ ∧ )(12 − 11)

→ 1(2
2
 − 21) + 2(2

2
 − 22) + 3(2

2
 − 23)

where 1 = lim( )→∞(1∧ 

∧ 


) 2 = lim( )→∞(1∧ 


∧ 


) and 3 = lim( )→∞(1∧ 


∧ 


)

Subcase 1b. For 13 − 11, we have

 (13 − 11) =
2



X


2 −




X


2· +  (1)
→ 22 − 24

Subcase 1c. For 14 − 11, we have

( ∧  )(14 − 11) = ( ∧  )( 1

+

1


)

2



X


2 − ( ∧  ) 1



X


2·

−( ∧  ) 1


X


2·· +  (1)

→ 4(2
2
 − 24) + 5(2

2
 − 23)

where 4 = lim( )→∞(1 ∧ 


) and 5 = lim( )→∞(1 ∧ 

)

Subcase 1d. For 15 − 11, we have

(15 − 11) =
2



X


2 −




X


2·
→ 22 − 26

Subcase 1e. For 16 − 11, we have

( ∧)(16 − 11) = ((1 ∧ 


) + (1 ∧ 


))

2



X


2 − (1 ∧



)




X


2·

−(1 ∧ 


)




X


2· + (1)

→ 6(2
2
 − 26) + 7(2

2
 − 25)
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where 6 = lim()→∞(1 ∧ 

) and 7 = lim()→∞(1 ∧ 


)

Subcase 1f. For 17 − 11, we have

( ∧ ∧  )(17 − 11) = (1 ∧ 


∧ 


)

⎛⎝ 2



X


2 −




X


2·

⎞⎠
+(1 ∧ 


∧ 


)

⎛⎝ 2



X


2 −




X


2·

⎞⎠
+(1 ∧ 


∧ 


)

⎛⎝ 2



X


2 −




X


2·

⎞⎠+ (1)

→ 8(2
2
 − 24) + 9(2

2
 − 25) + 10(2

2
 − 26)

where 8 = lim( )→∞(1 ∧ 

∧ 


) 9 = lim( )→∞(1 ∧ 


∧ 


) and 10 = lim( )→∞(1 ∧ 


∧ 


)

Case 2: Model 2 is the true model. In this case, Models 4, 6 and 7 are over-fitted and Models 1, 3 and
5 are under-fitted. By Lemmas A.8-A.11, we have

2 =  +2 + (1) for  = 1 3 5

22 = 2 +(()−2 + ( )−2 + ( )−2 + ( )−1)

24 = 4 +(()
−2
+ −2 + ( )−1)

26 = 6 +(
−2 +−2 + ( )−1)

27 = 7 +(
−2 +−2 + −2 + ( )−1)

For the under-fitted models, we have 2−22
→ 2  0 where  = 1 3 5. For the over-fitted cases,

we have to be careful in the discussion.
Subcase 2a. For 24 − 22 if we assume that   and  pass to infinity at the restrictive rates

such that  ()2 → 0 6 then analogously to Case 1, we can easily show that these conditions will ensure

 (24 − 22) =  (4 −2) +  (1)
→ 22 − 24 But as emphasized in the text, we do not want to

impose such a rate condition. In this case, we need to keep track of all terms in the expression of 24 and

22 that are not 
¡
−1

¢
 To unify notation, we make the following decomposition

24 − 22 =
1



X


(24
2
4 − 22

2
2)

=
1



X


£
(24 − 22) + (

2
4 − 1)(24 − 22) + (

2
4 − 22)

2
2

¤
≡ 

(24)
1 + 

(24)
2 + 

(24)
3  say.

Note that


(24)
1 =

1


 0 (4 −2) +

1


( 02∗2

 02 −  04∗4
 04)

≡ 
(24)
11 + 

(24)
12 , say,

6Admittedly, this rate requirement does not appear very restrictive and looks quite reasonable in many applications.
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where we recall ∗
= ( 0

)−1 (24)11 = − 1


P
 

2
· + (( )−1 + ( )−1) = 

¡
−1

¢
by

Lemmas A.12(i). For 
(24)
12  we make further decomposition


(24)
12 =

1


 0 (2 −4)∗4

 0 (2 −4) +
2


 0 (2 −4)∗4

 04

+
1


 02∗2

 0 (4 −2)∗4
 02

≡ 
(24)
121 + 2

(24)
122 + 

(24)
123 say.

By Lemmas A.4(i) and (iii) and A.12(i), and Assumption A.1(v), 
(24)
121 = (

−2) (24)122 = 

¡
−1

¢
(

−1

+()−1+( )−12) and (24)123 = (()−2+( )−2+( )−2+( )−1)

¡
−1

¢
 It follows

that 
(24)
12 = (

−1) and 
(24)
1 = − 1



P
 

2
· + (

−1) = 

¡
−1

¢


For 
(24)
2  we use the fact that  =  + ∗ by Lemma A.6(i). Let  =

1
1−  Then

2 − 2 =
1

(1−  − ∗)2
− 1

(1− )2
= 2

∗


where  = (2−−∗)(1−−∗)2Noting that ∗ is() as shown in the proof of Lemma
A.6(ii). One can readily show that max || = 2 +  (1)  We make the following decomposition


(24)
2 =

24 − 1


X


(24 − 22) +
1



X


(24 − 24)(
2
4 − 22) ≡ 

(24)
21 + 

(24)
22  say.


(24)
21 = (24 − 1)(24)1 =  (1)

(24)
1 = (

−1). For (24)22  we apply Lemma A.13(i) to obtain

¯̄̄

(24)
22

¯̄̄
=

¯̄̄̄
¯̄ 24


X


∗44(
2
4 − 22)

¯̄̄̄
¯̄ ≤ 24max |4|



X


∗4|24 − 22| = (
−1)

For 
(24)
3  we have


(24)
3 =

1



X


(24 − 22)
2
2

=
1



X


2 (4 − 2) 
2
2 +

1



X


(24 − 22 − 24 + 22)22

≡ 
(24)
31 + 

(24)
32 , say.

For 
(24)
31  we apply Lemmas A.5, A.6 and A.14(i) to obtain


(24)
31 = 2[−1 − ( )−1 + ( )−1]

1



X


22 +
2



X


(∗4 − ∗2)
2
2

= 2[−1 − ( )−1 + ( )−1]
1



X


22 + 
¡
−1

¢
=

2



1



X


2 + (
−1)
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as we can readily show that 1


P
 

2
 = 1



P
 

2
 + (1) when Model  is the true model.

For 
(24)
32  we can apply Lemmas A.5-A.6 and A.14(i) to show that¯̄̄

(24)
32

¯̄̄
=

1



X


(24 − 22 − 24 + 22)22 =
 (1)



X


|4 − 2| 22

≤  (1)

⎡⎣ ¯̄̄4 − ̄2
¯̄



X


22 +
1



X


|∗4 − ∗2|22

⎤⎦
=  (1)

£
(

−1) + (
−1)
¤
= (

−1)

It follows that 
(24)
3 = 2−1 1



P
 

2
 + (

−1) In sum, we have proved that

24 − 22 = 2
−1 1



X


2 −
1



X


2· + (
−1)

and then  (24 − 22)
→ 22 − 24 by Assumptions A.1(i) and A.2(iv).

Subcase 2b. For 26 − 22 noting that

26 − 22 = 6 −2 + (
−1 +−1)

=

µ
1


+
1



¶
2



X


2 −
1



X


2· −
1



X


2· + (
−1 +−1)

as in Subcase 1e, we have

( ∧) (26 − 22)
→ 6(2

2
 − 26) + 7(2

2
 − 25)

Subcase 2c. For 27 − 22 noting that

27 − 22 = 7 −2 + (
−1 +−1 + −1)

=

µ
1


+
1


+
1



¶
2



X


2 −−
1



X


2· −
1



X


2· −
1



X


2·

+(
−1 +−1 + −1)

as in Subcase 1f we have

( ∧ ∧  )(27 − 22)
→ 8(2

2
 − 24) + 9(2

2
 − 25) + 10(2

2
 − 26)

Case 3: Model 3 is the true model. In this case, Models 1, 2, 5, and 6 are under-fitted and Models 4 and
7 are over-fitted. By Lemmas A.8-A.11, we have

3 =  +3 + (1) for  = 1 2 5 6

33 = 3 +(
−2 + ( )−1)

34 = 4 +(()−2 + −2 + ( )−1)

37 = 7 +(
−2 +−2 + −2 + ( )−1)

For the under-fitted cases, by Lemma A.8 and A.10-A.11 we have

3 − 33
→ 3  0 for  = 1 2 5 6

We study the over-fitted cases in order.

30



Subcase 3a. For 34−33 the proof parallels to the analysis of 24−22 and we only sketch the
main steps. Note that 34 −33 =

1


P
(

2
4

2
4 − 23

2
3) ≡ 

(34)
1 + 

(34)
2 + 

(34)
3  where


(34)
 is defined analogously to 

(24)
 for  = 1 2 3 For 

(34)
1  we have by Lemmas A.4(ii)-(iii) and A.12(ii)


(34)
1 =

1


 0 (4

−3
) +

1


( 03

∗3
 03

 −  04
∗4

 04
)

= − 1


X


(·· − )
2
+ (()

−1
) = − 1



X


2·· + (()
−1
) = (()−1)

For 
(34)
2  we follow the analysis of 

(24)
2 and consider the following decomposition


(34)
2 =

24 − 1


X


(24 − 23) +
1



X


(24 − 24)(
2
4 − 23) ≡ 

(34)
21 + 

(34)
22  say.


(34)
21 = (24 − 1)(34)1 =  (1)

(34)
1 = (()−1). For (34)22  we apply Lemma A.13

¯̄̄

(34)
22

¯̄̄
=

¯̄̄̄
¯̄ 24


X


∗44(
2
4 − 23)

¯̄̄̄
¯̄ ≤ 24max |4|



X


∗4|24 − 23| = (()−1)

Next, we apply Lemmas A.5, A.6 and A.14(ii) to obtain


(34)
3 =

1 +  (1)



X


2 (4 − 3) 
2
3

= 2[()−1 − ( )−1]
1 +  (1)



X


23 +
2



X


(∗4 − ∗3)
2
3

=
2



1



X


2 + 
¡
()−1

¢


In sum, we have proved 34 − 33 = 2()−1 1


P
 

2
 − 1



P
=1 

2
·· + (()−1). Then

(34 − 33)
→ 22 − 23 by Assumptions A.1(i) and A.2(iii).

Subcase 3b. For 37 − 33 the proof parallels the analysis of 24 − 22 and we only sketch the

main steps. Note that 37 − 33 =
1



P
(

2
7

2
7 − 23

2
3) ≡ 

(37)
1 + 

(37)
2 + 

(37)
3  where


(37)
 is defined analogously to 

(24)
 for  = 1 2 3 For 

(37)
1  we have by Lemmas A.4(ii),(vi) and A.12(iii),


(37)
1 =

1


 0 (7 −3) +

1


( 03∗3

 03 −  07∗7
 07)

= − 1



X


2· −
1



X


2· + (
−1 +−1) = (

−1 +−1)

Following the analysis of 
(24)
2  we can show that 

(37)
2 = (

−1+−1). For (37)3  we can apply Lemmas
A.5, A.6 and A.14(iii) to obtain


(37)
3 =

1 +  (1)



X


2 (7 − 3) 
2
3

= 2[−1 +−1 − ()−1 − ( )−1 − ( )−1 + ( )−1]
1 +  (1)



X


23

+
2



X


(∗7 − ∗3)
2
3

= 2
¡
−1 +−1

¢ 1



X


2 + 
¡
−1 +−1

¢

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In sum, we have proved

37 − 33 = 2
¡
−1 +−1

¢ 1



X


2 −
1



X


2· −
1



X


2· + (
−1 +−1)

and then ( ∧)(37 −33)
→ 6(2

2
 − 26) + 7(2

2
 − 25) by Assumptions A.1(i) and A.2(v)-(vi).

Case 4: Model 4 is the true model. In this case, Models 1 2 3 5 and 6 are under-fitted and Model 7 is
over-fitted. By Lemmas A.8-A.11, we have

4 =  +4 + (1) for  = 1 2 3 5 6

44 = 4 +(()−2 + −2 + ( )−1) and

47 = 7 +(
−2 +−2 + −2 + ( )−1)

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have

4 − 44
→ 4  0 for  = 1 2 3 5 6

For the over-fitted case, we need to study 47 − 44 Note that 47 − 44 =
1



P
(

2
7

2
7

−2424) ≡ 
(47)
1 +

(47)
2 +

(47)
3  where 

(47)
 is defined analogously to 

(24)
 for  = 1 2 3 For 

(47)
1 

we have by Lemmas A.4(iii), (vi) and A.12(iv),


(47)
1 =

1


 0 (7 −4) +

1


( 04∗4

 04 −  07∗7
 07)

= − 1



X


2· −
1



X


2· + (
−1 +−1) = (

−1 +−1)

Following the analysis of 
(23)
2  we can show that 

(47)
2 = (

−1+−1). For (47)3  we can apply Lemmas
A.5, A.6 and A.14(iv) to obtain


(47)
3 =

1 +  (1)



X


2 (7 − 4) 
2
4 = 2

¡
−1 +−1

¢ 1



X


2 + 
¡
−1 +−1

¢


In sum, we have proved

47 − 44 = 2
¡
−1 +−1

¢ 1



X


2 −
1



X


2· −
1



X


2· + (
−1 +−1)

and then ( ∧)(47 −44)
→ 6(2

2
 − 26) + 7(2

2
 − 25) by Assumptions A.1(i) and A.2(v)-(vi).

Case 5: Model 5 is the true model. In this cases, Models 1 2 3 and 4 are under-fitted and Models 6
and 7 are over-fitted. By Lemmas A.8-A.11, we have

5 =  +5 + (1) for  = 1 2 3 4

55 = 5 +(
−2 + ( )−1)

56 = 6 +(
−2 +−2 + ( )−1)

57 = 7 +(
−2 +−2 + −2 + ( )−1)

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have

5 − 55
→ 5  0 for  = 1 2 3 4

We study the two over-fitted cases in order.
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Note that 56 − 55 =
1



P
(

2
6

2
6 − 25

2
5) ≡ 

(56)
1 + 

(56)
2 + 

(56)
3  where 

(56)
 is

defined analogously to 
(24)
 for  = 1 2 3 By Lemmas A.4(iv)-(v) and A.12(v),


(56)
1 =

1


 0 (6 −5) +

1


( 05∗5

 05 −  06∗6
 06)

= − 1



X


2· + (
−1) = (

−1)

Following the analysis of 
(24)
2  we can show that 

(56)
2 = (

−1). For (56)3  we can apply Lemmas A.5,
A.6 and A.14(v) to obtain


(56)
3 =

1 +  (1)



X


2 (6 − 5) 
2
5 = 2

−1 1



X


2 + 
¡
−1

¢


In sum, we have proved

56 − 55 = 2
−1 1



X


2 −
1



X


2· + (
−1)

and then  (56 − 55)
→ 22 − 25 by Assumptions A.1(i) and A.2(v).

Note that 57 − 55 =
1



P
(

2
7

2
7 − 25

2
5) ≡ 

(57)
1 + 

(57)
2 + 

(57)
3  where 

(57)
 is

defined analogously to 
(24)
 for  = 1 2 3 By Lemmas A.4(iv)-(v) and A.12(vi),


(57)
1 =

1


 0 (7 −5) +

1


( 05∗5

 05 −  07∗7
 07)

= − 1



X


2· −
1



X


2· + (
−1 + −1) = (

−1 + −1)

Following the analysis of 
(24)
2  we can show that 

(57)
2 = (

−1+−1). For (57)3  we can apply Lemmas
A.5, A.6 and A.14(vi) to obtain


(57)
3 =

1 +  (1)



X


2 (7 − 5) 
2
5 = 2(

−1 + −1)
1



X


2 + 
¡
−1 + −1

¢


In sum, we have proved

57 − 55 = 2
¡
−1 + −1

¢ 1



X


2 −
1



X


2· −
1



X


2· + (
−1 + −1)

and then ( ∧ ) (57 − 55)
→ 11(2

2
−24)+12(2

2
−25) by Assumptions A.1(i) and A.2(iv)-(v),

where 11 = lim( )→∞ 1 ∧ 

and 12 = lim( )→∞ 1 ∧ 


.

Case 6: Model 6 is the true model. In this case, Models 1 2 3 4 and 5 are under-fitted and Model 7 is
over-fitted. By Lemmas A.8-A.11, we have

6 =  +6 + (1) for  = 1 2 3 4 and 5

66 = 6 +(
−2 +−2 + ( )−1)

67 = 7 +(
−2 +−2 + −2 + ( )−1)

For the under-fitted cases, by Lemmas A.8 and A.10-A.11 we have

6 − 66
→ 6  0 for  = 1 2 3 4 and 5
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For 67 − 66 we have 67 − 66 =
1



P
(

2
7

2
7 − 26

2
6) ≡ 

(67)
1 + 

(67)
2 + 

(67)
3 

where 
(67)
 is defined analogously to 

(24)
 for  = 1 2 3 By Lemmas A.4(iv)-(v) and A.12(vii),


(67)
1 =

1


 0 (7

−6
) +

1



£
 06

∗6
 06

 −  07
∗7

 07

¤

= − 1



X


2· + (
−1) = (

−1)

Following the analysis of 
(24)
2  we can show that 

(67)
2 = (

−1). For (67)3  we can apply Lemmas A.5,
A.6 and A.14(vii) to obtain


(67)
3 =

1 +  (1)



X


2 (7 − 6) 
2
6 = 2

−1 1



X


2 + 
¡
−1

¢


In sum, we have proved

67 − 66 = 2
−1 1



X


2 −
1



X


2· + (
−1)

and then  (67 − 66)
→ 22 − 24 by Assumptions A.1(i) and A.2(iv).

Case 7: Model 7 is the true model. In this case, Models 1-6 are all under-fitted. By Lemmas A.8-A.11,
we have

7 − 77
→ 7  0 for  = 1 2  6

This completes the proof of the theorem. ¥
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Table 3A: Frequency of the model selected: static panels,  = 0

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3M4 M5 M6 M7

(10,10,5) .99 .01 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .85 .15 0 0 0 0 0 0 .99 0 0 .02

AIC (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .83 .17 0 0 0 0 0 0 1 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .98 0 0 0 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .83 .18 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .56 .44 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .01 0 .99 0 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .33 0 .67 0 0 0 0 0 .05 0 .95 0 0 0

(10,10,5) .98 .01 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .79 .18 0 0 .03 0 0 0 .96 0 0 .04

BIC2 (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) .99 .01 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

CV (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .91 .09 0 0 0 0 0 0 1 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .97 .03 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .55 .03 .39 .03 0 0 0 .04 .40 0 .55 .01 0 0

CV∗ (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .58 .02 .37 .04 0 0 0 0 .47 0 .53 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .96 .04 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6M7

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 .01 0 0 0 0 0 0 1

AIC (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) .94 0 0 0 .06 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BIC (20,20,5) .01 0 0 0 .99 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(20,20,20) .34 0 0 0 .66 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,5) 0 0 0 0 .98 .01 .01 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1

BIC2 (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .95

CV (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 .25 .01 0 0 .02 .36 .37

CV∗ (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .58 .42

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table 3B: Frequency of the model selected: static panels,  = 14

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3M4 M5 M6 M7

(10,10,5) .77 .07 .13 .03 0 0 .01 0 .73 0 .27 0 0 .01 0 0 .84 .14 0 0 .01 0 0 0 .98 0 0 .02

AIC (20,20,5) .92 .04 .03 .01 0 0 0 0 .93 0 .07 0 0 0 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) .83 .06 .10 .01 0 0 0 0 .82 0 .18 0 0 0 0 0 .97 .07 0 0 0 0 0 0 1 0 0 0

(10,10,20) .88 .02 .09 0 0 0 0 0 .84 0 .16 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1 0 0 0

(20,20,20) .97 .02 .01 0 0 0 0 0 .99 0 .01 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .97 .03 0 0 0 0 0

BIC (20,20,5) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .82 .18 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .99 0 .01 0 0 0 0 .77 .21 0 .03 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .01 0 .99 0 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .13 0 .87 0 0 0 0 0 .01 0 .99 0 0 0

(10,10,5) .53 .07 .31 .08 0 0 .02 0 .45 0 .52 0 0 .03 0 0 .78 .18 0 0 .04 0 0 0 .95 0 0 .05

BIC2 (20,20,5) .94 .04 .02 0 0 0 0 0 .95 0 .05 0 0 0 0 0 .85 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) .78 .07 .15 .01 0 0 0 0 .77 0 .23 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

(10,10,20) .90 .02 .08 0 0 0 0 0 .87 0 .13 0 0 0 0 0 .99 .02 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) .90 .07 .03 0 0 0 0 0 .95 0 .05 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

CV (20,20,5) .96 .04 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .91 .09 0 0 0 0 0 0 1 0 0 0

(10,10,10) .89 .06 .06 0 0 0 0 0 .93 0 .07 0 0 0 0 0 .96 .04 0 0 0 0 0 0 1 0 0 0

(10,10,20) .91 .03 .06 0 0 0 0 0 .91 0 .09 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) .97 .02 .01 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .79 .06 .14 .02 0 0 0 .03 .74 0 .23 .01 0 0

CV∗ (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .96 .02 .02 0 0 0 0 .01 .95 0 .04 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .97 .03 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6M7

(10,10,5) 0 0 0 0 .79 0 .20 0 0 0 0 0 .27 .73 0 0 0 0 0 0 1

AIC (20,20,5) 0 0 0 0 .97 0 .03 0 0 0 0 0 .63 .37 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .98 0 .02 0 0 0 0 0 .36 .64 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .49 .60 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 .82 .18 0 0 0 0 0 0 1

(10,10,5) .97 0 0 0 .03 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BIC (20,20,5) .06 0 0 0 .94 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(20,20,20) .79 0 0 0 .22 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,5) 0 0 0 0 .50 0 .50 0 0 0 0 0 .12 .88 0 0 0 0 0 0 1

BIC2 (20,20,5) 0 0 0 0 .98 0 .02 0 0 0 0 0 .70 .30 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .96 0 .04 0 0 0 0 0 .28 .72 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .43 .57 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 .96 .04 0 0 0 0 0 0 1

CV (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .92 .08 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 .07 0 0 0 .01 .74 .18

CV∗ (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .98 .02

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

36



Table 3C: Frequency of the model selected: static panels,  = 13

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3M4 M5 M6 M7

(10,10,5) .33 .05 .51 .10 0 0 .01 0 .29 0 .70 0 0 .01 0 0 .84 .15 0 0 .01 0 0 0 .98 0 0 .02

AIC (20,20,5) .28 .03 .57 .11 0 0 0 0 .21 0 .79 0 0 0 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) .41 .06 .50 .04 0 0 0 0 .37 0 .63 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

(10,10,20) .45 .02 .52 .01 0 0 0 0 .43 0 .57 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1 0 0 0

(20,20,20) .42 .03 .54 .02 0 0 0 0 .39 0 .61 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .97 .03 0 0 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .82 .18 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .98 0 .02 0 0 0 0 .76 .19 0 .05 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .01 0 .99 0 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .14 0 .86 0 0 0 0 0 .02 0 .99 0 0 0

(10,10,5) .13 .03 .66 .14 0 0 .04 0 .12 0 .83 0 0 .05 0 0 .78 .18 0 0 .04 0 0 0 .95 0 0 .06

BIC2 (20,20,5) .35 .03 .52 .10 0 0 0 0 .28 0 .72 0 0 0 0 0 .85 .15 0 0 0 0 0 0 1 0 0 0

(10,10,10) .31 .04 .59 .06 0 0 0 0 .30 0 .70 0 0 0 0 0 .92 .08 0 0 0 0 0 0 1 0 0 0

(10,10,20) .49 .02 .48 .01 0 0 0 0 .46 0 .54 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1 0 0 0

(20,20,20) .86 .03 .11 0 0 0 0 0 .86 0 .14 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) .63 .10 .25 .02 0 0 0 0 .66 0 .34 0 0 0 0 0 .92 .08 0 0 0 0 0 0 1 0 0 0

CV (20,20,5) .77 .11 .11 .02 0 0 0 0 .83 0 .17 0 0 0 0 0 .91 .09 0 0 0 0 0 0 1 0 0 0

(10,10,10) .55 .08 .35 0 0 0 0 0 .59 0 .41 0 0 0 0 0 .95 .05 0 0 0 0 0 0 1 0 0 0

(10,10,20) .53 .02 .45 0 0 0 0 0 .53 0 .47 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) .56 .05 .39 .01 0 0 0 0 .56 0 .44 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .81 .06 .12 .02 0 0 0 .03 .78 0 .18 .01 0 0

CV∗ (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .96 .03 .01 0 0 0 0 .01 .97 0 .02 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .97 .03 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6M7

(10,10,5) 0 0 0 0 .38 0 .62 0 0 0 0 0 .05 .95 0 0 0 0 0 0 1

AIC (20,20,5) 0 0 0 0 .39 0 .61 0 0 0 0 0 .02 .98 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .85 0 .15 0 0 0 0 0 .07 .93 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .10 .90 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 .08 .92 0 0 0 0 0 0 1

(10,10,5) .98 0 0 0 .02 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

BIC (20,20,5) .13 0 0 0 .87 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(20,20,20) .97 0 0 0 .04 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,5) 0 0 0 0 .14 0 .86 0 0 0 0 0 .02 .98 0 0 0 0 0 0 1

BIC2 (20,20,5) 0 0 0 0 .46 0 .54 0 0 0 0 0 .04 .96 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .75 0 .25 0 0 0 0 0 .04 .96 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .11 .89 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 .39 .61 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 .98 0 .02 0 0 0 0 0 .72 .29 0 0 0 0 0 0 1

CV (20,20,5) 0 0 0 0 .99 0 .01 0 0 0 0 0 .85 .15 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .61 .39 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .53 .47 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 .58 .42 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 .03 0 0 0 .01 .80 .16

CV∗ (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .99 .01

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table 3D: Frequency of the model selected: static panels,  = 34

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7

(10,10,5) 0 0 .81 .17 0 0 .02 0 0 0 .97 0 0 .04 0 0 .81 .17 0 0 .02 0 0 0 .97 0 0 .02

AIC (20,20,5) 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) 0 0 .88 .12 0 0 0 0 0 0 1 0 0 0 0 0 .88 .13 0 0 0 0 0 0 1 0 0 0

(10,10,20) 0 0 .94 .07 0 0 0 0 0 0 1 0 0 0 0 0 .94 .07 0 0 0 0 0 0 1 0 0 0

(20,20,20) 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

(10,10,5) .89 0 .10 0 0 0 0 .01 .62 0 .36 0 0 0 .29 0 .70 .01 0 0 0 .26 .01 0 .73 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .95 .05 0 0 0 0 0

(10,10,10) .75 0 .25 0 0 0 0 0 .57 0 .44 0 0 0 .02 0 .98 0 0 0 0 .02 0 0 .97 0 0 0

(10,10,20) .80 0 .20 0 0 0 0 0 .69 0 .32 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

(10,10,5) 0 0 .75 .18 0 0 .06 0 0 0 .93 0 0 .07 0 0 .75 .19 0 0 .06 0 0 0 .92 0 0 .08

BIC2 (20,20,5) 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0 0 0 .84 .16 0 0 0 0 0 0 1 0 0 0

(10,10,10) 0 0 .87 .13 0 0 0 0 0 0 1 0 0 0 0 0 .87 .13 0 0 0 0 0 0 1 0 0 0

(10,10,20) 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0

(20,20,20) 0 0 .95 .05 0 0 0 0 0 0 1 0 0 0 0 0 .95 .05 0 0 0 0 0 0 1 0 0 0

(10,10,5) 0 0 .90 .11 0 0 0 0 0 0 1 0 0 0 0 0 .90 .10 0 0 0 0 0 0 1 0 0 0

CV (20,20,5) 0 0 .91 .10 0 0 0 0 0 0 1 0 0 0 0 0 .90 .10 0 0 0 0 0 0 1 0 0 0

(10,10,10) 0 0 .91 .10 0 0 0 0 0 0 1 0 0 0 0 0 .91 .09 0 0 0 0 0 0 1 0 0 0

(10,10,20) 0 0 .95 .06 0 0 0 0 0 0 1 0 0 0 0 0 .95 .06 0 0 0 0 0 0 1 0 0 0

(20,20,20) 0 0 .95 .05 0 0 0 0 0 0 1 0 0 0 0 0 .95 .05 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .65 .16 .18 .02 0 0 0 .01 .67 0 .30 .02 0 0

CV∗ (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .82 .12 .05 .01 0 0 0 0 .89 0 .10 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .01 .96 .03 0 0 0 0 .02 0 .98 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7

(10,10,5) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

AIC (20,20,5) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,5) .99 .01 0 0 0 0 0 .99 0 0 0 0 0 0 1 0 0 0 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,10) .99 .01 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,20) .99 0 .01 0 0 0 0 1 0 0 0 0 0 0 .98 0 .02 0 0 0 0

(20,20,20) 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

(10,10,5) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

BIC2 (20,20,5) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 0 0 .99 0 0 0 0 0 0 1 0 0 0 0 0 0 .95

CV (20,20,5) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,10) 0 0 .01 .01 0 0 .98 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,20) 0 0 .08 .05 0 0 .87 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 .25 .01 0 0 0 .74 .25

CV∗ (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .93 .07

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .03 .98

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table 4: Frequency of the model selected: dynamic panels,  = (1 34)0

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3M4 M5 M6 M7

(10,10,5) .49 0 .42 .08 0 0 .01 0 .20 0 .78 0 0 .02 0 0 .84 .15 0 0 .01 0 0 0 .98 0 0 .02

AIC (20,20,5) .53 0 .40 .07 0 0 0 0 .21 0 .79 0 0 0 0 0 .85 .15 0 0 0 0 0 0 1 0 0 0

(10,10,10) .95 0 .04 0 0 0 0 0 .82 0 .18 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 .99 0 .01 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 .04 .96 0 0 0 0 0 1 0 0 0 0 0 0 .14 .86 0 0 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .05 .95 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

(10,10,5) .20 0 .61 .15 0 0 .04 0 .07 0 .88 0 0 .05 0 0 .79 .18 0 0 .04 0 0 0 .95 0 0 .05

BIC2 (20,20,5) .62 0 .32 .06 0 0 0 0 .28 0 .72 0 0 0 0 0 .86 .14 0 0 0 0 0 0 1 0 0 0

(10,10,10) .91 0 .08 .01 0 0 0 0 .73 0 .27 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) .87 0 .11 .02 0 0 0 0 .65 0 .35 0 0 0 .04 0 .89 .08 0 0 0 0 0 0 1 0 0 0

CV (20,20,5) .98 0 .02 0 0 0 0 0 .91 0 .09 0 0 0 0 0 .93 .08 0 0 0 0 0 0 1 0 0 0

(10,10,10) .99 0 .01 0 0 0 0 0 .94 0 .06 0 0 0 0 0 .96 .04 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6M7

(10,10,5) 0 0 0 0 .53 0 .47 0 0 0 0 0 .05 .95 0 0 0 0 0 0 1

AIC (20,20,5) 0 0 0 0 .61 0 .40 0 0 0 0 0 .05 .96 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .99 0 .01 0 0 0 0 0 .46 .54 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .90 .11 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) .06 0 0 0 .94 0 0 .14 .06 0 0 .01 .79 0 .21 0 0 0 .01 .78 0

BIC (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

(10,10,10) .10 0 0 0 .90 0 0 .45 .13 0 0 0 .42 0 .62 .01 0 0 0 .37 0

(10,10,20) .26 0 0 0 .74 0 0 .85 .14 0 0 0 .01 0 .98 .02 0 0 0 0 0

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

(10,10,5) 0 0 0 0 .20 0 .80 0 0 0 0 0 .01 .99 0 0 0 0 0 0 1

BIC2 (20,20,5) 0 0 0 0 .70 0 .30 0 0 0 0 0 .07 .93 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 .99 0 .01 0 0 0 0 0 .37 .63 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .91 .09 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 .86 .15 0 0 0 0 0 .06 .94

CV (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .98 .02 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table 5: Frequency of the model selected: dynamic panels with exogenous regressors

True model: M1 True model: M2 True model: M3 True model: M4

Selected models Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3M4 M5 M6 M7

(10,10,5) .72 .01 .23 .04 0 0 .01 0 .41 0 .57 0 0 .02 .06 0 .79 .14 0 0 .01 0 0 0 .98 0 0 .02

AIC (20,20,5) .90 0 .08 .02 0 0 0 0 .66 0 .34 0 0 0 0 0 .85 .15 0 0 0 0 0 0 1 0 0 0

(10,10,10) .98 .01 .02 0 0 0 0 0 .93 0 .08 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) 1 0 0 0 0 0 0 .10 .90 0 0 0 0 0 1 0 0 0 0 0 0 .32 .68 0 0 0 0 0

BIC (20,20,5) 1 0 0 0 0 0 0 .01 .99 0 0 0 0 0 1 0 0 0 0 0 0 .11 .89 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 .03 .97 0 0 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

(10,10,5) .39 0 .46 .11 0 0 .03 0 .16 0 .78 0 0 .06 0 0 .78 .17 0 0 .04 0 0 0 .95 0 0 .05

BIC2 (20,20,5) .94 0 .05 .01 0 0 0 0 .75 0 .26 0 0 0 0 0 .85 .15 0 0 0 0 0 0 1 0 0 0

(10,10,10) .97 .01 .03 0 0 0 0 0 .86 0 .14 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(10,10,5) .96 0 .04 0 0 0 0 0 .84 0 .16 0 0 0 .36 0 .60 .04 0 0 0 0 .09 0 .91 0 0 0

CV (20,20,5) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 .22 0 .72 .07 0 0 0 0 .02 0 .98 0 0 0

(10,10,10) .99 0 0 0 0 0 0 0 .98 0 .02 0 0 0 .04 0 .93 .04 0 0 0 0 0 0 1 0 0 0

(10,10,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

(20,20,20) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 0 1 0 0 0

True model: M5 True model: M6 True model: M7

Selected models Selected models Selected models

(N,M,T) M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M5 M6M7

(10,10,5) 0 0 0 0 .71 0 .30 0 0 0 0 0 .14 .87 0 0 0 0 0 .01 .99

AIC (20,20,5) 0 0 0 0 .90 0 .10 0 0 0 0 0 .30 .70 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .63 .37 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .93 .07 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) .94 0 0 0 .06 0 0 .48 .04 0 0 .37 .11 0 1 0 0 0 0 0 0

BIC (20,20,5) .02 0 0 0 .98 0 0 1 0 0 0 .01 1 0 1 0 0 0 0 0 0

(10,10,10) 1 0 0 0 0 0 0 .82 .04 0 0 .15 0 0 1 0 0 0 0 0 0

(10,10,20) 1 .01 0 0 0 0 0 .99 .01 0 0 0 0 0 1 0 0 0 0 0 0

(20,20,20) .35 0 0 0 .65 0 0 0 0 0 0 .04 .96 0 1 0 0 0 0 0 0

(10,10,5) 0 0 0 0 .36 0 .64 0 0 0 0 0 .05 .96 0 0 0 0 0 .01 .99

BIC2 (20,20,5) 0 0 0 0 .95 0 .05 0 0 0 0 0 .38 .63 0 0 0 0 0 0 1

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .54 .46 0 0 0 0 0 0 1

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 .94 .06 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(10,10,5) 0 0 0 0 1 0 0 0 0 0 0 0 .95 .05 0 0 0 0 0 .44 .57

CV (20,20,5) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .24 .76

(10,10,10) 0 0 0 0 1 0 0 0 0 0 0 0 .99 .01 0 0 0 0 0 .08 .92

(10,10,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

(20,20,20) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table 6A: Technology and contractions: Specification A

Model selection Estimate and 95% CI of 1

AIC BIC BIC2 CV CV∗ estimate 95% CI

Model 1 -1.900 -1.899 -1.900 0.150 0.141 -0.0002 [-0.0098 0.0094]

Model 2 -1.937 -1.908 -1.936 0.145 0.134 -0.0279 [-0.0402 -0.0156]

Model 3 -1.892 -1.436 -1.872 0.162 0.148 -0.0314 [-0.0437 -0.0191]

Model 4 -1.904 -1.442 -1.883 0.160 0.146 -0.0304 [-0.0427 -0.0181]

Model 5 -1.904 -1.738 -1.897 0.150 0.141 -0.0267 [-0.0392 -0.0142]

Model 6 -2.098 -1.557 -2.075 0.126 0.113 -0.0130 [-0.0242 -0.0018]

Model 7 -2.082 -1.108 -2.039 0.147 0.126 -0.0141 [-0.0251 -0.0031]

Selected model M6 M2 M6 M6 M6

Notes: The dependent variable is value added. The independent variables include Contraction×EFD and the control

variable for Specification A. 1 is the coefficient on Contraction×EFD. "CI" stands for "confidence interval". The CI
is based on the heteroskedasticity-robust standard errors. The total sample size is 57,115.

Table 6B: Technology and contractions: Specification B

Model selection Estimate and 95% CI of 1

AIC BIC BIC2 CV CV∗ estimate 95% CI

Model 1 -1.903 -1.901 -1.903 0.149 0.140 0.0107 [-0.0134 0.0348]

Model 2 -1.940 -1.909 -1.938 0.144 0.134 -0.0274 [-0.0584 0.0036]

Model 3 -1.894 -1.436 -1.874 0.162 0.147 -0.0297 [-0.0601 0.0007]

Model 4 -1.906 -1.442 -1.885 0.160 0.145 -0.0296 [-0.0596 0.0004]

Model 5 -1.908 -1.740 -1.900 0.149 0.140 -0.0165 [-0.0477 0.0147]

Model 6 -2.099 -1.556 -2.075 0.126 0.113 -0.0163 [-0.0439 0.0113]

Model 7 -2.082 -1.107 -2.039 0.149 0.127 -0.0236 [-0.0510 0.0038]

Selected model M6 M2 M6 M6 M6

Notes: The dependent variable is value added. The independent variables include Contraction×EFD and the control

variable for Specification A, and Contraction×EFD, Contraction×DEP, Contraction×ISTC, Contraction×RND,
Contraction×HC, Contraction×LAB, Contraction×FIX, Contraction×LMP, Contraction×SPEC, Contraction×INT,
and the control variable for Specification B. 1 is the coefficient on Contraction×EFD. "CI" stands for "confidence
interval". The CI is based on the heteroskedasticity-robust standard errors. The total sample size is 57,115.

Table 7A: Gravity equations: Specification A

Model selection Estimate and 95% CI of 1

AIC BIC BIC2 CV CV∗ estimate 95% CI

Model 1 1.077 1.078 1.077 2.937 0.237 1.214 [1.206 1.223]

Model 2 0.309 0.332 0.310 1.363 0.183 0.333 [0.297 0.369]

Model 3 -0.668 -0.465 -0.660 0.515 0.165 1.252 [1.247 1.258]

Model 4 -0.710 -0.496 -0.701 0.493 0.162 1.277 [1.239 1.316]

Model 5 0.874 1.188 0.888 2.398 0.225 1.345 [1.328 1.362]

Model 6 0.240 0.856 0.266 1.281 0.184 -0.002 [-0.040 0.036]

Model 7 -1.080 -0.273 -1.045 0.347 0.156 0.657 [0.577 0.738]

Selected model M7 M4 M7 M7 M7

Notes: The dependent variable is ln(Export). The independent variables include ln(GDP+GDP) for

Specification A. "CI" stands for "confidence interval". The CI is based on the heteroskedasticity-robust standard

errors. The total sample size is 48,403.
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Table 7B: Gravity equations: Specification B

Model selection Estimate and CI of 1 Estimate and 95% CI of 2

AIC BIC BIC2 CV CV∗ estimate 95% CI estimate 95% CI

Model 1 1.075 1.076 1.075 2.931 0.236 1.251 [1.240 1.262] -0.100 [-0.120 -0.079]

Model 2 0.287 0.310 0.288 1.333 0.182 0.657 [0.614 0.701] -0.714 [-0.762 -0.665]

Model 3 -0.670 -0.466 -0.661 0.514 0.165 1.217 [1.208 1.227] 0.335 [0.245 0.425]

Model 4 -0.713 -0.499 -0.704 0.492 0.162 1.262 [1.224 1.300] 0.461 [0.370 0.552]

Model 5 0.826 1.139 0.839 2.284 0.224 1.951 [1.919 1.982] -0.844 [-0.880 -0.809]

Model 6 0.228 0.845 0.255 1.267 0.185 0.340 [0.285 0.395] -0.550 [-0.605 -0.495]

Model 7 -1.082 -0.275 -1.048 0.346 0.156 0.619 [0.539 0.700] 0.864 [0.664 1.064]

Selected model M7 M4 M7 M7 M7

Notes: The dependent variable is ln(Export). The independent variables include ln(GDP+GDP) and ln(POP+POP)

for Specification B. "CI" stands for "confidence interval". The CI is based on the heteroskedasticity-robust standard errors.

The total sample size is 48,403.
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This supplement is composed of three Appendices. Appendix B contains the proof of Theorem 4.1; Appendix
C contains the proofs of the technical lemmas in Appendices A and B; Appendix D contains the Nickell biases
for the seven estimators of the slope coefficient in the panel AR(1) model.

B Proof of Theorem 4.1

To prove Theorem 4.1, without loss of generality and for notational simplicity we consider the AR(1) filtering

for {  ≥ 1}. Let bu = (̂2  ̂ )0, Û = (̂011  ̂01   ̂01  ̂
0
 )

0, ẑ = (̂1  ̂−1)0 and
Ẑ = (̂011  ̂

0
1   ̂01  ̂

0
 )

0. Let u = (2   )
0, U = (u011 u

0
1  u01 u

0
 )

0, and
z = (̈1  ̈−1)0 where ̈ = −·−·−·+··+··+··. Let  ·· ·· ·· · · and
· be defined analogously to ̈, ··, ··, ··, ·, ·, and · Hereafter let

P
 =

P
=1

P
=1

P
=2P

 =
P

=1

P
=2

P
 =

P
=1

P
=2 and

P
 =

P
=2 

Lemma B.1 Let  = ( )−12 +−1 +−1 + −1 Suppose that the conditions in Theorem 4.1
hold. Then
(i) 1

1
(Ẑ0Ẑ− Z0Z) = ( );

(ii) 1
1

(Ẑ0Û− Z0U) = ( );

(iii) (Ẑ0Ẑ)
−1
Ẑ0Û−  = ( )

Lemma B.2 Let ̃ =  − −1 and  = 1
1

P
 ̃

0
 (

0
)

−1
0 for  =

1 2  7. Suppose that the conditions in Theorem 4.1 hold. Then
(i) 1 = (( )−1);
(ii) 2 =

1
1

P
  [(1− ) (·· + ··) + (1− )··]+(()

−2
+( )

−2
+( )

−2
+( )−1);

(iii) 3 =
1−

1

P
 · +(

−2 + ( )−1);
(iv) 4 =

1
1

P
  [(1− )· + (1− )··] +(()−2 + −2 + ( )−1);

(v) 5 =
1

1

P
 (1− )· +(

−2 + ( )−1);
(vi) 6 =

1
1

P
 (1− )(· + ·) +(

−2 +−2 + ( )−1);
(vii) 7 =

1
1

P
  [(1− )· + (1− )(· + ·)] +(

−2 +−2 + −2 + ( )−1)

Lemma B.3 Let  be as defined in Lemma B.2. Suppose the conditions in Theorem 4.1 hold.

(i) If Model 2 is the true model, 4 −2 =
1−


P
 ·· + (

−1);
(ii) If Model 3 is the true model, 4 −3 =

1
1

P
 (1− )·· + (()

−1
);

(iii) If Model 3 is the true model, 7 −3 =
1

1

P
 (1− )(· + ·) + (

−1 +−1);
(iv) If Model 4 is the true model, 7 −4 =

1
1

P
 (1− )(· + ·) + (

−1 +−1);
(v) If Model 5 is the true model, 6 −5 =

1
1

P
 (1− )· + (

−1);
(vi) If Model 5 is the true model, 7−5 = 1

1

P
  [(1− )· + (1− )·]+(

−1+−1);
(vii) If Model 6 is the true model, 7 −6 =

1−
1

P
 · + (

−1)
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Lemma B.4 Let  = 1
1

P
[̃

0
(

0
)

−10 ]2 for  = 1 2  7. Suppose that the conditions
in Theorem 4.1 hold. Then
(i) 1 = (( )−1);
(ii) 2 =

1
1

P
{(1− )

2
(2·· + 2··) + [(1− )··]

2} + (( )−1 + ()
−2
+ ( )

−2
+

( )
−2
);

(iii) 3 =
(1−)2


P
 

2
· +(

−2 + ( )−1);
(iv) 4 =

1
1

P
{(1− )2 2· + [(1− )··]

2}+(()−2 + −2 + ( )−1);
(v) 5 =

1
1

P
 [(1− )·]

2 +(
−2 + ( )−1);

(vi) 6 =
1

1

P
{[(1− )·]

2
+ [(1− )·]

2}+(
−2 +−2 + ( )−1);

(vii) 7 =
1

1

P
{(1− )

2
2·+[(1− )·]

2
+[(1− )·]

2}+(
−2+−2+−2+( )−1)

Lemma B.5 Let  be as defined in Lemma B.4. Suppose that the conditions in Theorem 4.1 hold.

(i) If Model 2 is the true model, 4 − 2 =
(1−)2


P
 

2
· + (

−1);
(ii) If Model 3 is the true model, 4 − 3 =

1
1

P
 [(1− )··]

2 + (()−1);
(iii) If Model 3 is the true model, 7−3 = 1

1

P
{[(1− )·]

2+[(1− )·]
2}+(−1+−1);

(iv) If Model 4 is the true model, 7−4 = 1
1

P
{[(1− )·]

2+[(1− )·]
2}+(−1+−1);

(v) If Model 5 is the true model, 6 − 5 =
1

1

P
 [(1− )·]

2
+ (

−1);
(vi) If Model 5 is the true model, 7−5 = 1

1

P
{(1−)22·+[(1− )·]

2}+(
−1+−1);

(vii) If Model 6 is the true model, 7 − 6 =
(1−)2


P
 

2
· + (

−1)

Proof of Theorem 4.1. For notational simplicity, we assume that  = 1. Let  ∗∗ demote  ∗ () when

Model∗ is the true model. Noting that (−̂−1)−(̂() −̂0̂()−1) = (−−1)−(̂() −̂()−1)

+(̂− )(̂
()
−1 − −1) we can make the following decomposition

 ∗∗ =
1

1

X


h
( − ̂−1)− (̂() − ̂̂

()
−1)

i2
=

1

1

X


h
( − −1)− (̂() − ̂

()
−1)

i2
+
(̂− )

2

1

X


(̂
()
−1 − −1)2

+
2 (̂− )

1

X


h
( − −1)− (̂() − ̂

()
−1)

i
(̂
()
−1 − −1)

≡  ∗∗(1) +  ∗∗(2) +  ∗∗(3) say. (B.1)

We prove the theorem by considering all seven cases where Model ∗ is the true model for ∗ = 1 2  7
Case 1: Model 1 is the true Model. In this case, Models 2-7 are all over-fitted and we will show that

 ( ∗1   ∗11)→ 1 for  = 2  7 as ( )→∞. By Lemma A.7(i), we have

( − −1)− (̂() − ̂
()
−1)

= [ − 0(
0
)

−10 ]− −1[−1 − 0−1(
0
)

−10 ]

= [ − ̃0(
0
)

−10 ] + κ[−1 − 0−1(
0
)

−10 ] (B.2)

2



where κ =  − −1 ̃ =  − −1 By Lemma A.6, max |κ| = (1) For
 ∗1(1) we make the following decomposition

 ∗1(1) =
1

1

X


2[ − ̃0(
0
)

−10 ]
2

+
2

1

X


κ2[−1 − 0−1(
0
)

−1 0 ]
2

+
2

1

X


κ[−1 − 0−1(
0
)

−10 ][ − ̃0(
0
)

−1 0 ]

=  ∗1(1 1) +  ∗1(1 2) +  ∗1(1 3) say.

Following the study of 11 in the proof of Theorem 3.1, we can show  ∗11(1 1) =
1



P
 

2
 +

(( )
−1
) We shall study

Φ12 (1 1) =
1

1

X


n
(1− )2 (2·· + 2··) + 2·· − 2[(1− ) (·· + ··) + ··]

o
+ (1 )

= − 1


X


2·· −
1



X


2·· −
1

1

X


2·· + (1 )

Φ12 (1 2) =
2 +  (1)

1

X


(̄2 + ∗2)[ − ̃02(
0
22)

−102 ]
2

=
2 +  (1)

1

X


1 [ − ̃02(
0
22)

−1 02 ]
2 + (1 )

=
21

1

X


2 + (1 ) and

Φ12 (1 3) = (( )
−1
)

where 1 = ()
−1
+( )

−1
+( )

−1
 and we use the fact ·· = 1

1

P
=1

P
=2(−−1) =

(1 − )·· + (( )−1) and that ·· = 1
1

P
=1

P
=2( − −1) = (1 − )·· + (( )−1) It

follows that

( ∧ ∧ )
£
 ∗12(1 1)−  ∗11(1 1)

¤
= ( ∧ ∧ )

⎧⎨⎩21

1

X


2 −
1



X


2·· −
1



X


2·· −
1

1

X


2··

⎫⎬⎭+ (1)

→ 1(2
2
 − 21) + 2(2

2
 − 22) + 3(2

2
 − 23)

where ’s are defined as in the proof of Theorem 3.1. In addition, we can show that  ∗1(1 ) −
 ∗11(1 ) =  (1 ) for  = 2 3 

∗
1(2)− ∗11(2) = (̂− )

2
 (1 )  and 

∗
1(3)− ∗11(3) =

(̂− ) (1 )  Consequently, we have

( ∧ ∧ )( ∗12 −  ∗11)
→ 1(2

2
 − 21) + 2(2

2
 − 22) + 3(2

2
 − 23)
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Similarly, we can show that

Φ13 (1 1) =
1



X


[(1− )2 2· − 2 (1− )··] + (
−1) = − 1



X


2· + (
−1)

Φ13 (1 2) =
2−1

1

X


2 + (
−1)

Φ13 (1 3) = (( )
−1
)

 ∗13(1 ) −  ∗11(1 ) = 
¡
−1

¢
for  = 2 3  ∗13(2) −  ∗11(2) = (̂− )

2


¡
−1

¢
 and  ∗13(3) −

 ∗11(3) = (̂− )

¡
−1

¢
 where we use the fact · = 1

1

P
=2( − −1) = (1− )· +(

−1)
Then we have

1(
∗
13 −  ∗11) =

2

1

X


2 −
1



X


2· +  (1)
→ 22 − 24

By the same token, we can show that

( ∧ 1)( ∗14 −  ∗11) = ( ∧ 1)
⎧⎨⎩(−11 + ()−1)

2

1

X


2 −
1



X


2· −
1

1

X


2··

⎫⎬⎭
+ (1)
→ 4(2

2
 − 24) + 5(2

2
 − 23)

( ∗15 −  ∗11) =
2

1

X


2 −


1

X


2·
→ 22 − 26

( ∧)( ∗16 −  ∗11) = ( ∧)
⎧⎨⎩(−1 +−1)

2

1

X


2 −
1

1

X


2· −
1

1

X


2·

⎫⎬⎭
+(1)
→ 6(2

2
 − 26) + 7(2

2
 − 25)

and

( ∧ ∧ 1)( ∗17 −  ∗11) = ( ∧ ∧ 1)
⎧⎨⎩(−1 +−1 + −11 )

2

1

X


2 −
1



X


2·

− 1

1

X


2· −
1

1

X


2·

⎫⎬⎭+ (1)

→ 8(2
2
 − 24) + 9(2

2
 − 25) + 10(2

2
 − 26)

It follows that  ( ∗1   ∗11)→ 1 for  = 2 3 7

Case 2: Model 2 is the true model. In this case, Model 1, 3 and 5 are under-fitted and Model 4, 6 and 7
are over-fitted. We will show that  ( ∗2   ∗22)→ 1 for  = 1 3 4 5 6 7
First, we consider the under-fitted case. We will only show that  ( ∗21   ∗22) → 1 as the proof for

the  = 3 5 case follows similar arguments. By Lemma A.7(i), we have

( − −1)− (̂(1) − ̂
(1)
−1) = 1[ +  +  +  − 0(

0)−1 0 (2)]

−−11[−1 +  +  + −1 − 0−1(
0)−1 0 (2)]

= 1[ + (1− )( + ) + (1− ) − ̃0(
0)−1 0 (2)]

+κ1[−1 +  +  + −1 − 0−1(
0)−1 0 (2)]
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where  (2) =  +22 We make the following decomposition for 
∗
21(1) :

 ∗21(1) =
1

1

X


21[ + (1− )( + ) + (1− ) − ̃0(
0)−1 0 (2)]2

+
2

1

X


κ21[−1 +  +  + −1 − 0−1(
0)−1 0 (2)]2

+
2

1

X


1κ1[ + (1− )( + ) + (1− ) − ̃0(
0)−1 0 (2)]

×[−1 +  +  + −1 − 0−1(
0)−1 0 (2)]

≡  ∗21(1 1) +  ∗21(1 2) +  ∗21(1 3) say.

By Assumptions A.5 and A.7, we can show

 ∗21(1 1) =
1

1

X


2 +
1

1

X


[(1− )( + ) + (1− ) − ̃0(
0)−1 022]

2

+(1)
→ 2 + ∗21

Noting thatmax |κ1| = (1), we can readily show that 
∗
21(1 ) = (1) for  = 2 3 Then 

∗
21(1)

→
2 + ∗21 In addition, using the fact that ̂−  = (1) and following the analysis of 21 we can readily

show that  ∗21() = (1) for  = 2 3 Consequently, we have shown that  ∗21 = 2 + ∗21 + (1) For

 ∗22 it is easy to show  ∗22 = 2 + (1) It follows that 
∗
21 −  ∗22 → ∗21  0 Analogously, we can

show that
 ∗2 −  ∗22 → ∗2  0 for  = 3 5

Now, we consider the over-fitted case. We focus on showing that  ( ∗24   ∗22) → 1 as the other
over-fitted cases are similar. By (B.1) and applying similar arguments as used in the analysis of  ∗12− ∗11,
we will show that 1[

∗
24(1)− ∗22(1)]→ 22−24 and 1[ ∗24()− ∗22()] = (1) for  = 2 3 Noting

that when Model 2 is the true model and Model  = 2 4 6 7 are used, we have

 − ̂
()
 = [ −  (

0
)

−1
0 ] = [ −  (

0
)

−1
0 ]

where we use the fact that 0 +  +  +  = 0 and  = 22 +  =  +  when Model

2 is the true model and Model  is just- or over-fitted. In particular, when Model  is over-fitted, some
elements in  corresponding to the redundant columns in  have true value zero. Then for  = 2 4 6 7
we have

( − −1)− (̂() − ̂̂
()
−1)

= [ − 0(
0
)

−10 ]− −1[−1 − 0−1(
0
)

−10 ]

= [ − ̃0(
0
)

−1 0 ] + κ[−1 − 0−1(
0
)

−10 ] (B.3)

and

 ∗2(1) =
1

1

X


2[ − ̃0(
0
)

−10 ]
2

+
2

1

X


κ2[−1 − 0−1(
0
)

−1 0 ]
2

+
2

1

X


κ[ − ̃0(
0
)

−10 ][−1 − 0−1(
0
)

−1 0 ]

=  ∗2(1 1) +  ∗2(1 2) +  ∗2(1 3) say.
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By Lemmas A.4(i) and (iii) A.6(ii), B.3(i) and B.5(i), we have

1[
∗
24(1 1)−  ∗22(1 1)] =

2

1

X


2 +
(1− )

2
1



X


2· −
2(1− )1



X


··

+(1)

=
2

1

X


2 −
21


X


2· + (1)

→ 22 − 24

where we use the fact · = 1
1

P
=2( − −1) = (1 − )· + (

−1) In addition, using the fact
that max |κ4| = (1) and that ̂− = (1) we can also show that 

∗
24(1 )− ∗22(1 ) = (

−1)
and  ∗24()−  ∗22() for  = 2 3 Thus we have

1(
∗
24 −  ∗22)

→ 22 − 24

Analogously, we can apply Lemmas A.4(i) and (v)-(vi), A.6(ii), B.2(ii) and (vi)-(vii) and B.4(ii) and (vi)-(vii)
and show that

( ∧)( ∗26 −  ∗22) = ( ∧)

µ
1


+
1



¶
2



X


2 −
1



X


2· −
1



X


2· + (1)

→ 6(2
2
 − 26) + 7(2

2
 − 25)

and

( ∧ ∧  )( ∗27 −  ∗22) = ( ∧ ∧  )
⎧⎨⎩
µ
1


+
1


+
1



¶
2



X


2 −−
1



X


2·

− 1



X


2· −
1



X


2·

⎫⎬⎭+ (1)

→ 8(2
2
 − 24) + 9(2

2
 − 25) + 10(2

2
 − 26)

Consequently we have  ( ∗2   ∗22)→ 1 as (  )→∞ for  = 1 3 4 5 6 7
Cases 3-6: Model 3, 4, 5, or 6 is the true model. The proof is analogous to that of Case 2 and thus

omitted.
Case 7: Model 7 is the true model. In this case, Models 1-6 are all under-fitted. Noting that − ̂() =

1[ +  +  + ∗ + 0 − 0(
0
)

−10 ] we have

( − −1)− (̂() − ̂
()
−1)

= [ + (1− ) + (1− )( + ∗) + ̃0 − ̃0(
0
)

−1 0 ]

+κ[−1 +  + −1 + ∗−1 − 0−1 − 0−1(
0
)

−10 ]
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and

 ∗7(1)

=
1

1

X


2[ + (1− ) + (1− )( + ∗) + ̃0 − ̃0(
0
)

−1 0 ]
2

+
2

1

X


κ2[−1 +  + −1 + ∗−1 − 0−1 − 0−1(
0
)

−10 ]
2

+
2

1

X


κ[ + (1− ) + (1− )( + ∗) + ̃0 − ̃0(
0
)

−10 ]

×[−1 +  + −1 + ∗−1 − 0−1 − 0−1(
0
)

−10 ]

≡  ∗7(1 1) +  ∗7(1 2) +  ∗2(1 3) say.

Noting that  = +77+ whenModel 7 is the true model and 
0
(

0
)

−10 = 0(
0
)

−1

×0
+

£
 − 0(

0
)

−1
¤0
∗

£
 0 − 0(

0
)

−10


¤
with∗

= ( 0
)−1

we can readily apply Lemma A.6 and Assumptions A.5 and A.7 to show that

 ∗7(1 1)−  ∗77(1 1) =
1

1

X


[(1− ) + (1− )( + ∗)− ̃0(
0
)

−1077]
2

+ (1)
→ ∗7  0 for  = 1 2  6

Using the fact that max |κ| = (1) and that ̂ −  = (1) we can also show that  ∗7(1 ) −
 ∗77(1 ) = (1) and  ∗7()−  ∗77() for  = 2 3 and  = 1 2  6 It follows that  ∗7 −  ∗77

→
∗7  0 and  ( ∗7   ∗77)→ 1 as (  )→∞ for  = 1 2  6 ¥

C Proofs of the technical lemmas in Appendices A and B

Proof of Lemma A.1. Noting that  0
 =

Ã
 0  0
0 0

!
 the result follows from the inversion

formula for a 2 × 2 partitioned matrix. See, e.g., Bernstein (2005, p.45). One can also verify the result by
definition. ¥

Proof of Lemma A.2. (i) Noting that 0

"
−1
−0−1

#
= 0 for  =    we can readily show

that 0
 = 0 0

 = 0 and 0
 = 0 by using the property that (1 ⊗2 ⊗3)

0
(1 ⊗2 ⊗3)

= 011 ⊗022 ⊗033 for conformable matrices 1 2 3 1 2 and 3 Noting that  ⊗  =  
we have

0
 =

³h
−1 −−1

i
⊗ 0

´Ã
 ⊗

"
−1
−0−1

#!

=
h
−1 −−1

i
 ⊗ 0

"
−1
−0−1

#
= 0

Similarly, we can show the other claims in (i).
(ii) This follows from (i) directly.
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(iii) Noting that 0
 = (−1 + −1)  we have (0

)
−1 = 1


(−1 − 1


−1) Then

 =  (
0
)

−1
0


=
1



Ã"
−1
−0−1

#
⊗ 

!µ
−1 − 1


−1

¶³h
−1 −−1

i
⊗ 0

´
=

µ
 − 



¶
⊗ 


⊗ 




Similarly, other parts in (iii) follow.

(iv) Noting that 0
 =  (−1 + −1)  we have (0

)
−1
= 1


(−1− 1


−1) Then

 =  (
0
)

−1
0


=
1



Ã"
−1
−0−1

#
⊗ 

!µ
−1 − 1


−1

¶³h
−1 −−1

i
⊗ 0

´
=

µ
 − 



¶
⊗ 




Similarly, we have  =


⊗ ( − 


)

(v) Noting that ∗0
∗
 =  (−1 + −1) ⊗   we have (

∗0


∗
 )
−1
= 1


(−1 − 1


−1) ⊗  

Then

 ∗ = ∗ (
∗0


∗
 )
−1

∗0

=
1



Ã"
−1
−0−1

#
⊗  ⊗ 

!µµ
−1 − 1


−1

¶
⊗ 

¶³h
−1 −−1

i
⊗ 0 ⊗ 

´
=

µ
 − 



¶
⊗ 


⊗  

Similarly, we can show the other two parts in (v). ¥
Proof of Lemma A.3. For (i), noting that (⊗ 


) = (1··   ··)0⊗ and




 =  · 

we have

1


0 =

1



∙
0( ⊗ 


)−0





¸ ∙
( ⊗ 


) − 




¸
=

1


0( ⊗ 


) − 1


0






=
1



X
=1

··
0
·· − 

0


Similarly, we can show (ii) and (iii).

For (iv), noting that ( ⊗ 

) = (11·  1·  1·  ·)0 ⊗   we have

1


0 =

1



∙
0( ⊗ 


)−0





¸ ∙
( ⊗ 


) − 




¸
=

1


0( ⊗ 


) − 1


0






=
1



X


·
0
· − 

0


Similarly, we can prove (v).
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For (vi), noting that  ∗ =  ⊗ ( − 

)⊗ 


 we have

1


0 ∗ =

1



∙
0( ⊗ 


)−0( ⊗ 


)

¸ ∙
( ⊗ 


) − ( ⊗ 


)

¸
=

1


0( ⊗ 


) − 1


0( ⊗ 


)

=
1



X


·
0
· −

1



X
=1

··
0
··

Analogously, we can prove (vii) and (viii). ¥
Proof of Lemma A.4. (i) By Lemma A.2(ii) and Assumptions A.1(iv), A.2(i)-(iii) and A.3(i)-(iii), we

have

1


 02

 =
1


 0 − 1


 0 − 1


 0 − 1


 0

=
1


 0 − 1



X
=1

···· − 1



X
=1

···· − 1



X
=1

···· + 3

= (()−1 + ( )−1 + ( )−1 + ( )−12)

(ii) Noting that 3 =   by Lemma A.2(iv) and Assumptions A.1(iv), A.2(iv) and A.3(iv) we have

1


 03 =

1


 0 − 1


 0

=
1


 0 − 1



X


·· + 

= (
−1 + ( )−12)

(iii) By Lemma A.2(ii) and Assumptions A.1(iv), A.2(iii)-(iv) and A.3(iii)-(iv) we have

1


 04 =

1


 0 − 1


 0 − 1


 0

=
1


 0 − 1



X


·· − 1



X


···· + 2

= (
−1 + ()

−1
+ ( )

−12
)

(iv) Noting that 5 =   by Lemma A.2(iv) and Assumptions A.1(iv), A.2(vi) and A.3(vi) we have

1


 05 =

1


 0 − 1


 0

=
1


 0 − 1



X


·· + 

= (( )−12 +−1)

(v) By Lemma A.2(iv) and Assumptions A.1(iv), A.2(ii) and (v)-(vi) and A.3(iii) and (v)-(vi) we have

1


 06 =

1


 0 − 1


 0 ∗ −

1


 0

=
1


 0 − 1



X


·· +
1



X


···· − 1



X


·· + 

= (( )−12 +−1 +−1)
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(vi) By Lemma A.2(iv) and Assumptions A.1(iv), A.2 and A.3 we have

1


 07 =

1


 0 − 1


 0 ∗ −

1


 0 ∗ −

1


 0 ∗

=
1


 0 − 1



X


·· +
1



X
=1

···· − 1



X


··

+
1



X
=1

···· − 1



X


·· +
1



X
=1

····

= (
−1 +−1 + −1 + ( )−12) ¥

Proof of Lemma A.5. Note that 0(
0
)

−1 denotes the {(− 1) + ( − 1) + }th
diagonal element of 

for  = 2  7. The form of 
is given in Lemma A.2 (note that 3

= 

and 5 = 
), from which the results in (i)-(vi) follow immediately. ¥

Proof of Lemma A.6. (i) Noting that  = () we can apply Lemma A.1 to obtain



= (0 
0
)

Ã
∗

−∗
 0(

0
)

−1

−(0
)

−10
∗

(0
)

−1 + (0
)

−10
∗

 0(
0
)

−1

!

×
Ã





!
= 0(

0
)

−1 + [ − 0(
0
)

−1]0∗
[ − 0(

0
)

−1]

= ̄ + ∗

where ∗
= ( 0

)−1
(ii) Note that (

0
)

−10
 is a projection matrix with spectral norm 1 and ̄ ≡ 0(

0
)

−1

× is a constant which is  (1) for each  by Lemma A.5

1



°° 0(
0
)

−1
°°2 =

1


0(

0
)

−10
  0(

0
)

−1

≤ ̄


max

³
(0

)
−120

  0(
0
)

−12
´

≤ ̄


tr
¡
 0(

0
)

−10


¢
≤ ̄

1


k 0k = 

¡
̄
¢


By the Cauchy-Schwarz inequality and Assumption A.1(ii) and (v),

max


∗ ≤ 2

∙
1


max


kk2 + 1


max


°°0(0
)

−10


°°2¸
= (( )−12 + ̄) =  (1) 

where  = [min(
1


 0

)]−1 =  (1) by Assumption A.1(v).

(iii) Noting that max |1 − 1| = max

¯̄̄

1−

¯̄̄
≤ max 

1−max   the result follows from part

(ii).
(iv) This follows from the definition of 1 and part (ii).
(v) This follows from the definition of 1 and part (ii). ¥
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Proof of Lemma A.7. (i) For the model  = 0 + 0 +  = 0 + , the OLS

and leave-one-out OLS estimators of  = (0 0)0 are given by ̂ = ( 0)−10 and ̂ =
(0 − 

0
)

−1 (0 − )  respectively. By the updated formula for OLS estimation(e.g.

Greene (2008, p.964)), we have ̂ − ̂ = − 1
1− (

0
)

−1
 It follows that

 − ̂ =  − 0

µ
̂ − 1

1− 
(0)

−1


¶
=  +



1− 
 =



1− 


(ii) When the true model is given by  = +∗∗+ but with  = () used in the regression,
we have

̂ = (0)
−1

 0 = (
0
)

−1
Ã

 0  0∗

0
 0


∗

!Ã


∗

!
+ (0)

−1
Ã

 0
0


!
≡  +  say.

By using the inverse formula in Lemma A.1, we can readily show that

 =

Ã
∗

−∗
 0(

0
)

−1

−(0
)

−10
∗

(0
)

−1 + (0
)

−10
∗

 0(
0
)

−1

!

×
Ã

 0 + 0∗∗

0
 +0


∗∗

!

=

Ã
 + ( 0

)−1 0
∗∗

(0
)

−10


∗∗ − (0
)

−10
∗

 0
∗∗

!


and similarly

 =

Ã
( 0

)−1 0

(0
)

−10
 − (0

)
−10

∗
 0



!


where ∗
= ( 0

)−1 It follows that

 =  − 0̂ = (
0
 + ∗0

∗ + )− (0 0) ( + )

= (0 + ∗0
∗ + )− 0( +∗

 0
∗∗ +∗

 0)

−0[(0
)

−10


∗∗ − (0
)

−10
∗

 0
∗∗

+ (0
)

−10
 − (0

)
−10

∗
 0

 ]

=  + + 

(iii) Noting that   and  are typical elements of 
 ( − )

∗∗ and
−

∗
 0

 respectively, we haveX


2 =  0
X


2
 = ∗0∗0

( − )
∗∗

X


2 =  0
∗

 0


X


 =  0
( − )

∗∗

X


 = − 0
∗

 0
 and

X


 = 0

where we also use the fact that
P

 
0
 =  0

P
 

0
 = 0


P

 
0


=  0 and 
( − ) = 0 ¥
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Proof of Lemma A.8. We first determine the probability order of 1 ≡ 1


P
 

2


2
 and

then that of 2 ≡ 1


P
 

2
 By Lemmas A.6(iii) and A.7(iii),

1 ≤ 2



X


2 = 2

1


 0

∗
 0



where 2 = max 
2
 = 1 +  (1) by Lemma A.6(iii). One can readily show that by Assumptions

A.1(iv)-(v) and Lemma A.4,

11 = (( )−1)

21 = (( )
−1
+ ()

−2
+ ( )

−2
+ ( )

−2
)

31 = (( )−1 + −2)

41 = (( )−1 + −2 + ()−2)

51 = (( )
−1
+−2)

61 = (( )−1 +−2 +−2)

71 = (( )−1 +−2 +−2 + −2)

For 2 ≡ 1


P
 

2
 we make the following decomposition

2 =
1



X


 +
2



X




+
1



X


(2 − 1− 2)

≡ 21 + 222 +23 say.

By Lemma A.7(iii), 21 = − 1


P


2
 whose probability order is given above. By Lemma A.6(i),

22 =
̄



X


 +
1



X


∗ ≡ 22 +22 say.

By the Cauchy-Schwarz inequality we have

|22| ≤ ̄

⎧⎨⎩ 1



X


2

⎫⎬⎭
12⎧⎨⎩ 1



X


2

⎫⎬⎭
12

= 

¡
̄2 + 

¢


where  ≡ 1


P


2
 has the same probability order as 1 studied above, the exact values

of ̄’s are given in Lemma A.5, and we use the fact that
1



P


2
 =  (1) by Lemma A.10 below.

For 22 we have

|22| ≤ max


∗
1



X


||

= 

³
̄ + ( )−12

´⎧⎨⎩ 1



X


2

⎫⎬⎭
12⎧⎨⎩ 1



X


2

⎫⎬⎭
12

= 

¡
̄2 + ( )−1

¢
+ () = 

¡
̄2 + 

¢

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By Lemma A.6

|23| ≤ 1



X


¯̄
(2 − 1− 2)

¯̄
≤ [3 +  (1)]max


2

1



X


||

≤ [3 +  (1)]

¡
̄2 + ( )−1

¢ 1



X


||

=  (22) = 
¡
̄2 + 

¢


Summarizing the above results yields the claims in the lemma. ¥
Proof of Lemma A.9. The key observation is that when Model  is just- or over-fitted, 

∗ = 0
and 0(

0
)

−10


∗∗ = 0(
0
)

−10
 = 0 = ∗0

∗ where the coefficients
in  corresponding to the redundant dummies in Model  are zero. As a result,  = 0 whenever Model
 is just- or over-fitted for  ∈ {2 3  7}  ¥
Proof of Lemma A.10. (i) For 1 we make the following decomposition:

1 =
1



X


21 +
1



X


(21 − 1)21 ≡ 11 +12 say.

Note that 11 =
1



P
 

2
 For 12 we have

12 =
1



X


¡
21 − 1

¢
2 =

1



X


21 − 21

(1− 1)2
2

=
2



X


1
2
 +

1



X


31 − 221
(1− 1)2

1
2
 ≡ 121 +122 say.

For 121 we have that by Assumption A.1(iii) and (v) and the Markov inequality,

121 =
2



X


1
2
 =

2



X


0(
0)−12

≤ °°( 0)−1
°° 2



X


kk2 2 = (( )−1)

This, in conjunction with Lemma A.6(iv), implies that

122 ≤ max


¯̄̄̄
¯31 − 221(1− 1)2

¯̄̄̄
¯ 1



X


1
2
 = (1)(( )−1) = (( )−1)

Thus we have shown that 1 =
1



P
 

2
 +(( )−1)
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(ii) For 2 we make the following decomposition

2 =
1



X


(1 + 22)
2
2 +

1



X


¡
22 − 1− 22

¢
22

= (1 + 2 ()−1 + 2 ( )−1 + 2 ( )−1)
1



X


22

+
2



X


h
2 − ()

−1 − ( )
−1 − ( )

−1i
22

+
1



X


¡
22 − 1− 22

¢
22

≡ 21 +22 +23 say.

By Lemmas A.2(ii) and A.3(i)-(iii) and Assumptions A.1(iv) and A.2(i)-(iii),

21 = (1 +
2


+

2


+

2


)

1


 02

= (1 +
2


+

2


+

2


)

1


 0 ( −  −  −  )

= (1 +
2


+

2


+

2


)

⎧⎨⎩ 1



X


2 −
1



X
=1

2·· −
1



X
=1

2·· −
1



X
=1

2·· + 3
2

⎫⎬⎭
= (1 +

2


+

2


+

2


)

1



X


2 −
1



X
=1

2·· −
1



X
=1

2·· −
1



X
=1

2··

+(()−2 + ( )−2 + ( )−2 + ( )−1)

For 22 we apply the results of Lemmas A.5(i) and A.6(i) and Assumption A.1(iii) and (v),

22 =
2



X


h
2 − ()−1 − ( )−1 − ( )−1

i
22

=
2



X


∗2
2
2 +(( )

−1
) 6 2

°°( 02)
−1°°

sp
22 +(( )

−1
)

where 22 =
1



P


°°° − 02 (
0
22)

−1
2

°°°2 ( −  02 (
0
22)

−1
2)

2 Noting that

 02 (
0
22)

−1
2 = ·· + ·· + ·· − 3 and  02 (

0
22)

−1
2 = ·· + ·· + ·· − 3

we can readily apply the Cauchy-Schwarz inequality and Assumption A.1(iii)-(iv) and show that 22 =
 (1)  It follows that 22 = (( )−1) For 23 we make the following decomposition

23 =
1



X


¡
22 − 1− 22

¢
22 =

1



X


3− 22
(1− 2)2

22
2
2

=
3



X


22
2
2 +

1



X


∙
3− 22
(1− 2)2

− 3
¸
22

2
2

≡ 231 +232 say.

For 231, we have

231 ≤ max


22
3



X


22 = (̄
2
2)

14



By Lemma A.6(v) and the dominated convergence theorem (DCT), 232 = (̄
2
2) Combining the above

results yields the conclusion in (ii).
(iii) As in the proof of (ii), we make the following decomposition

3 =
1



X


(1 + 23)
2
3 +

1



X


(23 − 1− 23)23

= (1 + 2−1)
1



X


23 +
2



X


¡
3 − −1

¢
23

+
1



X


(23 − 1− 23)23

≡ 31 +32 +33 say.

By Lemma A.3(iv) and Assumptions A.1(iv) and A.2(iv),

31 = (1 + 2−1)
1


 03 = (1 + 2

−1)
1


 0 ( − )

= (1 + 2−1)

⎛⎝ 1



X


2 −
1



X


2· + 2

⎞⎠
= (1 + 2−1)

1



X


2 −
1



X


2· +(
−2 + ( )−1)

By Lemmas A.5(ii) and A.6(i),

32 =
2



X


¡
3 − −1

¢
23 =

2



X


∗3
2
3 +(( )−1)

6 2
°°( 03

)−1
°°
sp
32 +(( )−1)

where 32 =
1



P


°°° − 03 (
0
33)

−1
3

°°°2 ( −  03 (
0
33)

−1
3)

2 Noting that

 03 (
0
33)

−1
3 = · −  and  03 (

0
33)

−1
3 = · − 

we can readily show that 32 =  (1)  Then 32 = (( )
−1
) Following the analysis of 23 we can

readily show that 33 = (
−2+( )−1) It follows that 3 = (1+

2

) 1


P
 

2
− 1



P
 

2
·+

(
−2 + ( )−1)

(iv) As in the proof of (ii), we make the following decomposition

4 =
1



X


(1 + 24)
2
4 +

1



X


¡
24 − 1− 24

¢
24

= (1 + 2−1 + 2()−1)
1



X


24 +
2



X


¡
4 − −1 − ()−1

¢
24

+
1



X


¡
24 − 1− 24

¢
24

≡ 41 +42 +43 say.
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By Lemmas A.2(ii) and A.3(iii)-(iv) and Assumptions A.1(iv) and A.2(iii)-(iv),

41 = (1 + 2−1 + 2()−1)
1


 04

= (1 + 2−1 + 2()−1)
1


 0 ( −  −  )

= (1 + 2−1 + 2()−1)

⎛⎝ 1



X


2 −
1



X


2· −
1



X


2·· + 2
2

⎞⎠
= (1 + 2−1 + 2()−1)

1



X


2 −
1



X


2· −
1



X


2··

+(()−2 + −2 + ( )−1)

Using arguments as used in the analyses of22 and23 we can readily show that42 = (( )
−1
) and

43 = (()−2 + −2 + ( )−1) Then (iv) follows.
(v) As in the proof of (ii), we make the following decomposition

5 =
1



X


(1 + 25)
2
5 +

1



X


¡
25 − 1− 25

¢
25

= (1 + 2−1)
1



X


25 +
2



X


¡
5 −−1

¢
25

+
1



X


¡
25 − 1− 25

¢
25

≡ 51 +52 +53 say.

By Lemma A.3(v) and Assumptions A.1(iv) and A.2(vi),

51 = (1 + 2−1)
1


 05

 = (1 + 2−1)
1


 0 ( −  )

= (1 + 2−1)

⎛⎝ 1



X


2 −
1



X


2· + 2

⎞⎠
= (1 + 2−1)

1



X


2 −
1



X


2· +(
−2 + ( )−1)

Using arguments as used in the analyses of22 and23 we can readily show that52 = (( )−1) and
53 = (

−2 + ( )−1) Then (v) follows.
(vi) As in the proof of (ii), we make the following decomposition

6 = (1 + 2−1 + 2)−1)
1



X


26 +
2



X


¡
6 −−1 −−1

¢
26

+
1



X


¡
26 − 1− 26

¢
26

≡ 61 +62 +63 say.
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By Lemmas A.2(ii) and A.3(v) and (vii), and Assumptions A.1(iv) and A.2(iii) and (v)-(vi),

61 = (1 + 2−1 + 2)−1)
1


 06

= (1 + 2−1 + 2)−1)
1


 0 ( −  ∗ −  )

= (1 + 2−1 + 2)−1)

⎛⎝ 1



X


2 −
1



X


2· −
1



X


2· +
1



X


2·· + 2

⎞⎠
= (1 + 2−1 + 2)−1)

1



X


2 −
1



X


2· −
1



X


2·

+(
−2 +−2 + ( )−1)

Using arguments as used in the analyses of22 and23 we can readily show that62 = (( )
−1
) and

63 = (
−2 +−2 + ( )−1) Then (iv) follows.

(vii) As in the proof of (ii), we make the following decomposition

7 = (1 + 2−1 + 2−1 + 2−1)
1



X


27 +
2



X


¡
7 −−1 −−1 − −1

¢
27

+
1



X


¡
27 − 1− 27

¢
27

≡ 71 +72 +73 say.

By Lemmas A.2(ii) and A.3(vi)-(vii) and Assumptions A.1(iv) and A.2(i)-(vi)

71

= (1 + 2−1 + 2−1 + 2−1)
1


 07

= (1 + 2−1 + 2−1 + 2−1)
1


 0 ( −  ∗ −  ∗ −  ∗ )

= (1 + 2−1 + 2−1 + 2−1)

×
⎛⎝ 1



X


2 −
1



X


2· −
1



X


2· −
1



X


2· +
1



X


2·· +
1



X


2·· +
1



X


2··

⎞⎠

= (1 + 2−1 + 2−1 + 2−1)
1



X


2 −
1



X


2· −
1



X


2· −
1



X


2·

+(
−2 +−2 + −2 + ( )−1)

Using arguments as used in the analyses of22 and23 we can readily show that72 = (( )−1) and
73 = (

−2 +−2 + −2 ++( )−1) Then (vii) follows. ¥
Proof of Lemma A.11. (i) We write  = 2



P
 

2
 +

2


P
 

2


× ≡ 21 + 22 say. For 1 we make futher decomposition

1 =
1



X


 +
1



X


(2 − 1) ≡ 11 +12 say.

Noting that 
( −)

=  − −
 we can readily show that by Lemma A.7(iii) and
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Assumption A.4

11 =
1



X


 =
1


 0

( − )
∗∗

=
1


 0
¡
 −  − 

¢
∗∗

=
1



X


[∗
∗ − 0(

0
)

−10
∗∗] = (1)

For 12 we have by Lemma A.6(iv)

|12| ≤ 2 [1 + (1)]



X


 ||

≤ 2 [1 + (1)]max




⎧⎨⎩ 1



X


2

⎫⎬⎭
12⎧⎨⎩ 1



X


2


⎫⎬⎭
12

≤ (̄ + ( )−12) (1) (1) =  (1) 

where we use the fact that 1


P


2
 =  (1) and

1


P


2
 =  (1)  Thus 1 =  (1) 

For 2 noting that
P

 = 0 by Lemma A.7(iii), we have 2 =
1



P
(

2
 −

1). Using arguments used in the analysis of 12 we can show that 2 =  (1). This
completes the proof of the lemma.
(ii) Note that ∗ =

1


P


2
+

1


P
(

2
− 1)2

 ≡ ∗1+∗2 say. For

∗1 we have by Assumption A.4

∗1 =
1



X


2
 = ∗0∗0

( − )
∗∗

= ∗0∗0( −  − 
)∗∗ → ∗

By Lemma A.6(iii) and the DCT, ∗2 =  (1)  This completes the proof of the lemma. ¥
Proof of Lemma A.12. (i) Noting that 4 − 2 =  −  −  by Lemma A.2(ii), we have by

Lemma A.3(i), (ii), and (iv) and Assumptions A.1-A.3

1


0 (2 −4) =

1


0 ( −  − )

=
1



X


·
0
· −

1



X
=1

··
0
·· −

1



X
=1

··
0
·· + 

0

=
1



X


(· − )
¡
· − 

¢0 − 1



X
=1

(·· − ) (·· − )0

− 1


X
=1

(·· − )(·· − )0

=
1



X


(· − )
¡
· − 

¢0
+(( )−1 + ( )−1) = (

−1)

(ii) Noting that 4 − 3 =  by Lemma A.2(ii) and the fact 3 =  , we have by Lemma A.3(iii)

1


0 (3 −4) =

1


0 =

1



X
=1

(·· − )
¡
·· − 

¢0
= (()−1)
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(iii) Noting that 7
− 3

=  ∗ +  ∗ +  ∗ −  by Lemma A.2(ii),

1


0 (3

−7
) =

1


0 ( ∗ +  ∗ +  ∗ − )

=
1



X


·
0
· +

1



X


·
0
· −

1



X
=1

··
0
··

− 1


X
=1

··
0
·· −

1



X
=1

··
0
·· + 

0

=
1



X


(· − )(· − )0 +
1



X


(· − )
¡
· − 

¢0
+(()−1 + ( )−1 + ( )−1)

= (
−1 +−1)

(iv) Noting that 7
−4

=  ∗ + ∗ + ∗ − − by Lemma A.2(ii), we have by (iii) and Lemma
A.3(iii)

1


0 (4 −7) =

1


0 ( ∗ +  ∗ +  ∗ −  −  )

=
1



X


(· − )(· − )0 +
1



X


(· − )
¡
· − 

¢0
− 2


X
=1

(·· − ) (·· − )0 − 1



X
=1

(·· − ) (·· − )0

− 1


X
=1

(·· − )(·· − )0

=
1



X


(· − )(· − )0 +
1



X


(· − )
¡
· − 

¢0
+(()−1 + ( )−1 + ( )−1) = (

−1 +−1)

(v) Noting that 6−5 =  ∗ by Lemma A.2(ii) and the fact that 5 =   we have Lemma A.3(vii)

1


0 (5 −6) =

1


0 ∗ =

1



X


(· − )(· − )0 − 1



X
=1

(·· − ) (·· − )0

=
1



X


(· − )(· − )0 +(()−1) = (
−1)

(vi) Noting that 7 − 5 =  ∗ +  ∗ +  ∗ −  by Lemma A.2(ii) and the fact that 5 =  ,
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we have Lemma A.3(v)-(viii)

1


0 (5

−7
) =

1


0 ( ∗ +  ∗ +  ∗ −  )

=
1



X


(· − )(· − )0 +
1



X


(· − )(· − )0

− 1


X
=1

(·· − ) (·· − )0 − 1



X
=1

(·· − ) (·· − )0

− 1


X
=1

(·· − )(·· − )0

=
1



X


(· − )(· − )0 +
1



X


(· − )(· − )0

+(()−1 + ( )−1 + ( )−1) = (
−1 + −1)

(vii) Noting that 7 − 6 =  ∗ +  ∗ −  by Lemma A.2(ii), we have Lemma A.3(v), (vi) and
(viii),

1


0 (6

−7
) =

1


0 ( ∗ +  ∗ −  )

=
1



X


(· − )(· − )0 − 1



X
=1

(·· − ) (·· − )0

− 1


X
=1

(·· − )(·· − )0

=
1



X


(· − )(· − )0 +(( )−1 + ( )−1) = (
−1) ¥

Proof of Lemma A.13. We have  = (
0
)

−1 which is the ((−1)+(−1)+)th
column of . Then, for  = {}, we have:


0
2 = ·· + ·· + ·· − 3


0
3 = · − 


0
4 = · + ·· − 2


0
5 = · − 


0
6 = · + · − ·· − 


0
7 = · + · + · − ·· − ·· − ··

Below we focus on the proof of (i) as the proofs of the other parts in the lemma are analogous.
(i) If Model 2 is the true model, we have 4 = 4 +4 and 2 = 2 +2 It follows that

24 − 22 = (24 −22) + (
2
4 − 22) + 2(4 −2)4 + 22 (4 − 2)

≡
4X
=1

42 ()  say.

By the triangle inequality, we have 1


P
 

∗
4

¯̄
24 − 22

¯̄ ≤ P4
=1

1


P
 

∗
4 |42 ()| ≡P4

=124 ()  say.
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First, we study 24 (1). Noting that

24 −22 = (4 −2) (4 +2)

= − ¡̄4 − ̄2

¢0

h
2 −

¡
̄4 + ̄2

¢0

i

= −2 ¡̄4 − ̄2

¢0
 +

¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢


we have

24 (1) =
1



X


∗4
¯̄
24 −22

¯̄
≤ 2



X


∗4
¯̄̄¡
̄4 − ̄2

¢0


¯̄̄
+

1



X


∗4
¯̄̄¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢¯̄̄ ≡ 224 (1 1) +24 (1 2) 

By the Cauchy-Schwarz inequality,

24 (1 1) ≤
⎧⎨⎩ 1



X


∗4

⎫⎬⎭
12⎧⎨⎩ 1



X


∗4
°°°¡̄4 − ̄2

¢0


°°°2
⎫⎬⎭
12



Noting that  − 0̄4 =  − 04(
0
44)

−14 denotes the residual in the OLS regression of 
on 4 we have

1



X


∗4 =
1



X


¡
 − 0̄4

¢0
∗4

¡
 − 0̄4

¢
≤ °°∗4

°°
sp

1



X


¡
 − 0̄4

¢0 ¡
 − 0̄4

¢
≤ °°∗4

°°
sp

1



X


kk2 = (( )−1)

Noting that ∗4 ≤ 20∗4
 + 2̄

0
4∗4

 0̄4 we have

1



X


∗4
°°°¡̄4 − ̄2

¢0


°°°2
≤ 2



X


0
∗
4



°°°¡̄4 − ̄2

¢0


°°°2
+

2



X


̄0
4∗4

 0̄4

°°°¡̄4 − ̄2

¢0


°°°2 ≡  +  say,

where

 ≤ °°∗4

°°
sp

2



X


kk2 2
h¡
̄4 − ̄2

¢0

i2

=
°°∗4

°°
sp

2



X


kk2 2 (· − ·· − ·· + )2

≤ °°∗4

°°
sp

8



X


kk2
¡
2· + 2·· + 2··

¢
+(( )−2)

= (( )−1)
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since we can show 1


P
 kk2 2(2·+ 2··+ 2··) = (1) by Assumption A.1(iii) and the Cauchy-

Schwarz and Jensen inequalities. Similarly

 ≤ °°∗4

°°
sp

1



X


2
°°̄0

4
°°2 h¡̄4 − ̄2

¢0

i2

=
°°∗4

°°
sp

1



X


2 k· + ·· − 2k2 (· − ·· − ·· + )2

= (( )−1)

where we use the fact k· + ·· − 2k2 ≤ 3(k·k2 + k··k2 + k2k2) (· − ·· − ·· + )
2 ≤ 4(2· +

2·· + 2·· + 2) and that 1


P
 

2
||†||2†2 = (1) for 

†
 = ·, ·· and  and 

†
 = 2·, 

2
··,

2·· and 2 by Assumption A.1(iii). Consequently, we have 24 (1 1) = (( )−1) = 
¡
−1

¢


For 24 (1 2) we have

24 (1 2) ≤
⎧⎨⎩ 1



X


∗4

⎫⎬⎭
12⎧⎨⎩ 1



X


∗4
h¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢i2⎫⎬⎭
12



where

1



X


∗4
h¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢i2
≤ 2



X


0
∗
4



h¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢i2
+

2



X


̄0
4∗4

 0̄4

h¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢i2 ≡  + 

Note that

 ≤ °°∗4

°°
sp

2



X


kk2
h¡
̄4 − ̄2

¢0
 0

¡
̄4 + ̄2

¢i2
=

°°∗4

°°
sp

1



X


kk2 [(· − ·· − ·· + ) (· + ·· + ·· + 2·· − 5)]2

= (( )−1)

since we can show 1


P
 kk2 (4·+4··+4··+4··) = (1) by Assumption A.1(iii). Similarly, we can

show that  = (̄4)(( )−1) It follows that 24 (1 2) = (( )−12)×(̄
12
4 ( )−12) =


¡
−1

¢
 In sum, we have shown that 24 (1) = 

¡
−1

¢


Next, we study 24 (2)  Noting that

4 − 2 =
¡
̄0
4 − 0)

∗
4

 04 −
¡
̄0
2 − 0

¢
∗2

 02
¢

= (̄4 − ̄2)
0∗4

 04 + (̄
0
2 − 0)(

∗
4
−∗2

) 04

+(̄0
2 − 0)

∗
2

 0 (4 −2)
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we have

24 (2) =
1



X


∗4 |(4 − 2) (4 + 2)|

≤ 1



X


∗4
¯̄
(̄4 − ̄2)

0∗4
 04

 (4 + 2)
¯̄

+
1



X


∗4
¯̄
(̄0

2 − 0)(
∗
4
−∗2

) 04 (4 + 2)
¯̄

+
1



X


∗4
¯̄
(̄0

2 − 0)
∗
2

 0 (4 −2) (4 + 2)
¯̄

≡ 24 (2 1) +24 (2 2) +24 (2 3)  say.

It suffices to consider the probability bound for each term. By the Cauchy-Schwarz inequality

24 (2 1) ≤
⎧⎨⎩ 1



X


∗4(̄4 − ̄2)
0∗4

 0(̄4 − ̄2)

⎫⎬⎭
12

×
⎧⎨⎩ 1



X


∗4 (4 + 2)
2
 04∗4

 04

⎫⎬⎭
12



Noting that 
0
4 = · + ·· − 2 and 

0
2 = ·· + ·· + ·· − 3 respectively, and using ∗4 ≤

2
°°∗4

°°
sp
(kk2 + ||̄0

4||2) we have

1



X


∗4(̄4 − ̄2)
0∗4

 0(̄4 − ̄2)

≤ °°∗4

°°2
sp

2



X


n
kk2 + ||̄0

4||2
o
(̄4 − ̄2)

0 0(̄4 − ̄2)

≤ °°∗4

°°2
sp

2



X


n
kk2 + k· + ·· − 2k2

o
k· − ·· − ·· + k2

= (( )−2)

and

1



X


∗4 (4 + 2)
2
 04∗4

 04

≤ °°∗4

°°2
sp

2



X


n
kk2 + ||̄0

4||2
o
(4 + 2)

2
 04∗4

 04

≤ °°∗4

°°2
sp
k 04k2

2



X


n
kk2 + k· + ·· − 2k2

o
(4 + 2)

2

= 

¡
−2 + ()−2 + ( )−1

¢
 (1) 

where we use the fact
°°∗4

°°
sp
= (( )−1) 1


k 04k = (

−1 + ()−1 + ( )−12)

by Lemma A.4(iii), 1


P
 kk2 (4 + 2)

2
=  (1)  and we can readily show

1


P

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||· + ·· − 2||2 (4 + 2)
2 = (1) Then 24 (2 1) = 

¡
−1

¢
 In addition, we have

24 (2 2) =
1



X


∗4
¯̄̄¡
 − 0̄2

¢0
( 04)

−1
[ 0 (4 −2)] (

04)
−1

× 04 (4 + 2)|

≤
°°°°°
µ

1


 04

¶−1°°°°°
2

sp

°°°° 1


 0 (4 −2)

°°°°°°°° 1


 04

°°°°
× 1



X


∗4
°°¡ − 0̄2

¢
(4 + 2)

°°
=  (1)

¡
−1

¢
(

−1 + ()−1 + ( )−12) (1) = 
¡
−1

¢


and

24 (2 3) =
1



X


∗4
¯̄̄¡
 − 0̄2

¢0
∗2

 0 (4 −2) (4 + 2)
¯̄̄

≤
°°°°°
µ

1


 04

¶−1°°°°°
sp

°°°° 1


 0 (4 −2)

°°°°
× 1



X


∗4
°°°¡ − 0̄2

¢0
(4 + 2)

°°°
=  (1)

¡
−1

¢
 (1) = 

¡
−1

¢


as we can readily show that 1


P
 

∗
4

°°¡ − 0̄2

¢
(4 + 2)

°° =  (1)  Consequently,

24 (2) = 
¡
−1

¢


Next, we study 24 (3)  Noting that (4 −2)4 = −
¡
̄4 − ̄2

¢0
4

24 (3) =
4



X


∗4
¯̄̄¡
̄4 − ̄2

¢0
4

¯̄̄

≤ 4

⎧⎨⎩ 1



X


∗4

⎫⎬⎭
12⎧⎨⎩ 1



X


∗4
2
4

h¡
̄4 − ̄2

¢0

i2⎫⎬⎭

12

= (( )−12)(
−12 + ( )−12) = 

¡
−1

¢


as we can show that

1



X


∗4
2
4

h¡
̄4 − ̄2

¢0

i2

≤ 2



X


0
∗
4


2
4

h¡
̄4 − ̄2

¢0

i2

+
2



X


̄0
4∗4

 0̄4
2
4

h¡
̄4 − ̄2

¢0

i2

≤ °°∗4

°°
sp

2



X


kk224
h¡
̄4 − ̄2

¢0

i2

+
°°∗4

°°
sp

2



X


°°̄0
4

°°224 h¡̄4 − ̄2

¢0

i2

= 

¡
( )−1

¢


24



Analogously, we can show that 24 (4) = 
¡
−1

¢
 Consequently, we have 24 = 

¡
−1

¢


(ii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that


0
3 = · −  and 

0
4 = · + ·· − 2.

(iii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact

that 
0
7 = · + · + · − ·· − ·· − ·· and 

0
3 = · − .

(iv) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that


0
7 = · + · + · − ·· − ·· − ·· and 

0
4 = · + ·· − 2.

(v) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that


0
6 = · + · − ·· −  and 

0
5 = · − .

(vi) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact that


0
7 = · + · + · − ·· − ·· − ·· and 

0
5 = · − .

(vii) The proof is analogous to that of (i). The main difference is that we now heavily rely on the fact

that 
0
7 = · + · + · − ·· − ·· − ·· and 

0
6 = · + · − ·· −  ¥

Proof of Lemma A.14. (i) Recall that ̄ =  (
0
)

−1
 and ∗

= ( 0
)
−1
for

 = 2  7 Noting that

∗4 − ∗2 =
¡
 − 0̄4

¢0
∗4

¡
 − 0̄4

¢− ¡ − 0̄2

¢0
∗2

¡
 − 0̄2

¢
= 0(

∗
4
−∗2

) + (̄4 − ̄2)
0∗4

 0(̄4 − ̄2)

+2̄0
2∗4

 0(̄4 − ̄2) + 2̄
0
2(

∗
4
−∗2

) 0̄0
2

+20(
∗
4
−∗2

) 0̄4 + 2
0


∗
2

 0 ¡̄4 − ̄2

¢
≡

6X
=1

24 () 

we have 24 ≤
P6

=1
1



P
 |24 ()| 22 ≡

P6
=1 24 ()  say. It suffices to show that 24 () =

(
−1) for  = 1 2  6
For 24 (1)  we have

24 (1) ≤
°°∗4

−∗2

°°
sp

1



X


kk2 22 = 

¡
( )−1

¢


as we can readily show that 1


P
 kk2 22 = 1



P
 kk2 22 +  (1) =  (1)  For

24 (2)  we have

24 (2) ≤
°°∗4

°°
sp

2



X


°°(̄4 − ̄2)
0
°°2 22 = (( )−1) (1) = (

−1)

as we can show that 1


P


°°(̄4 − ̄2)
0
°°2 22 = 1



P
 k· − ·· − ·· + k2 22 =

(1) For 24 (3)  we have by the Cauchy-Schwarz inequality

24 (3) ≤ 2
⎧⎨⎩ 1



X


̄0
2∗4

 0̄2
2
2

⎫⎬⎭
12

{24 (2)}12 

We have

1



X


̄0
2∗4

 0̄2
2
2 ≤ °°∗4

°°
sp

1



X


k·· + ·· + ·· − 3k2 22

= 

¡
( )−1

¢

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It follows that 24 (3) = 

¡
( )−12

¢ {24 (2)}12 = 
¡
−1

¢


Noting that°°(∗4
−∗2

) 0°°
sp

=
°°°[( 04)

−1 − ( 02)
−1
] 0
°°°
sp

=
°°° ( 04

)
−1
[ 0(4

−2
)] ( 02

)
−1

 0
°°°
sp

≤
°°°°°
µ

1


 04

¶−1°°°°°
sp

°°°°°
µ

1


 02

¶−1°°°°°
sp

1


kk2sp

×
°°°° 1


 0(4 −2)

°°°°
=  (1) (1) (1)

¡
−1

¢
= 

¡
−1

¢
and similarly,

°°(∗4
−∗2

) 0°°
sp
= ( )

−12


¡
−1

¢
 we have

24 (4) =
2



X


¯̄
̄0
2(

∗
4
−∗2

) 0̄2

¯̄
22

≤ max


°°̄2

°°2 °°(∗4
−∗2

) 0°°
sp

2



X


22 ≤ ̄2

¡
−1

¢
 (1) = 

¡
−1

¢


and

24 (5) =
2



X


¯̄
0(

∗
4
−∗2

) 0̄4

¯̄
22

≤ max


°°̄2

°°°°¡∗4
−∗2

¢

°°
sp

2



X


kk 22

= ̄
12
2 (( )−12)(

−1) (1) = 
¡
−1

¢


where we use the fact that
°°̄2

°°2 = ̄2

For 24 (6)  we have

24 (6) =
2



X


¯̄
0

∗
2

 0 ¡̄4 − ̄2

¢¯̄
22

≤ 2

⎧⎨⎩ 1



X


0
∗
2


2
2

⎫⎬⎭
12

{24 (2)}12

≤ °°∗2

°°12
sp

⎧⎨⎩ 1



X


kk2 22

⎫⎬⎭
12

{24 (2)}12

= 

³
( )−12

´
 (1) 

³
−12

´
= 

¡
−1

¢


This completes the proof of (i).
(ii)-(vii) The proofs are completely analogous to that of (i). the main difference is that we need to use

the probability order of 
0
2 = ·· + ·· + ·· − 3, 0

3 = · − , 
0
4 = · + ·· − 2,


0
5 = ·−, 

0
6 = ·+·−··− and 

0
7 = ·+·+·−··−··−·· in order. ¥

Proof of Lemma B.1. (i) When Model 7 is used, the residual vector is given by Û =7−7(̂−

26



) By Lemma A.2(v), 7
=  −  ∗ −  ∗ −  ∗  where

 ∗ =  ⊗ ( − 


)⊗ 


=  ⊗ 


−  ⊗ 




 ∗ = ( − 


)⊗ 


⊗  =  ⊗ 


⊗  − 


⊗   and

 ∗ =



⊗  ⊗ ( − 


) =




⊗  − 


⊗  ⊗ 




So a typical element of 7 is given by

 − (̄· − ̄··)− (̄· − ̄··)− (̄· − ̄··) ≡ ̈

Therefore, ̂ = ̈− (̂−)0̈ where ̈ is defined analogously to ̈. Under the stated assumptions,
we can readily show that ̂ −  = ( ) It follows that

1

1
(Ẑ0Ẑ− Z0Z) = (̂ − )0

1

1

X


−1X
=1

̈̈
0
(̂ − )− (̂ − )0

2

1

X


−1X
=1

̈̈

= ( ) ·(1) ·( ) +( ) ·(1) = ( )

where we use the fact that 1
1

P


−1P
=1

̈̈
0
 = (1) and that

1
1

P


−1P
=1

̈̈ = (1)

(ii) The analysis is analogous to that in (i) and thus omitted.

(iii) First we need to prove (Z0Z)−1 Z0U −  = (
2
 ). When  = 1 we have  = 1  =

 − −1 and

̈ − ̈−1 =  − · − · + ·· + (1− ) (·· + ·· − ·) 

Then

(Z0Z)−1 Z0U−  =

⎛⎝X


̈2−1

⎞⎠−1⎛⎝X


̈−1̈

⎞⎠− 

=

⎛⎝X


̈2−1

⎞⎠−1X


̈−1 [ − · − · + ·· + (1− ) (·· + ·· − ·)]

=

⎛⎝X


̈2−1

⎞⎠−1X


̈−1 − (1− )

⎛⎝X


̈2−1

⎞⎠−1X


̈−1·

+(( )−1)

where the third equality follows from the fact that 1


P
=1 ̈ =

1


P
=1 ̈ =  1

1

P
=1

P
=2 ·

= 1
1

P
=1

P
=2 ·· =  and both  and  are (( )−12) Similarly, noting that 1



P
=1 ̈ =

1


P
=1 ̈ =  we have

1



X


̈· =
1



X


( − ̄· − ̄· − ̄· + ̄·· + ̄·· + ̄··) ̄·

=
1



X


( − ̄·) ̄· + ̄·· ̄

= (
−1) +(()−12)(( )−12)
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and

1



X


̈−1· =
1



X


Ã
X
=1

̈ − ̈

!
·

= 
1



X


· − 1



X


̈·

= (( )−1) +(
−1 + ()−1−12)

In addition

1



X


̈−1 =
1



X


 (−1 − ·−1 − · − ·−1 + ·· + ·· + ··−1)

= (( )−12 +−1 +−1 + −1 + ( )−1 + ( )−1 + ()−1)
= ( )

It follows that (Z0Z)−1 Z0U −  = ( ) Then (Ẑ
0Ẑ)
−1
Ẑ0Û −  = ( ) follows by noting the

results in part (i)-(ii). ¥
Proof of Lemma B.2. (i) By the Assumptions A.5(iv) and A.1(iv)-(v) and noting that ̃1 =  −

−1 we have

1 =

⎧⎨⎩ 1

1

X


( − −1)

⎫⎬⎭ ( 0)−1 0

= (( )−12)(( )−12) = (( )−1)

To prove (ii)-(vii), noting that ̃ =  − −1 = (( − −1)0 ( − −1)0)
0

≡ (̃0 ̃0)0 for  = 2  7 we first apply Lemma A.1 and make the following decomposition

 =
1

1

X


(̃
0
 ̃

0
)(

0
)

−1
µ
 0
0


¶
=

1

1

X




n
̃0 (

0
)
−1

 0
 − ̃0(

0
)

−10
 (

0
)
−1

 0


+̃0(
0
)

−10


o
≡ 1 −2 +3 say. (C.1)

Let ̄ =
1

1

P
 ̃

0
(

0
)

−10
 and  = (

0
)−1 0

 for  = 2  7 Define


0
 ≡ 0(

0
)

−1 and  ≡ 0(
0
)

−1̃ for  = {} and  = 2  7

(C.2)

Noting that 
0
2 = (··−)+(··−)+(··−) 03 = ·− 04 = (·−)+(··−) 05 = ·−


0
6 = (· − ··) + (· − ) and 

0
7 = (· − ··) + (· − ··) + (· − ··) we have that

2 = (1− ) (·· + ·· − 2) + (1− )(·· − )

3 = (1− )(· − )

4 = (1− )(· − ) + (1− )(·· − )

5 = (1− )(· − )

6 = (1− ) [(· − ··) + (· − )] 

7 = (1− )(· − ··) + (1− )[(· − ··) + (· − ··)] (C.3)
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We are ready to prove (ii)-(vii) in order.
(ii) For 21 we have by Lemma A.4(i) and Assumptions A.1(v) and A.5(iv),

21 =

⎧⎨⎩ 1

1

X


̃
0


⎫⎬⎭ ( 02
)
−1

 02


= (( )−12)(()−1 + ( )
−1
+ ( )−1 + ( )−12)

Note that 22 = ̄22. Using 2 in (C.3) with  = , we have by Assumptions A.3 and A.5 and the

Cauchy-Schwarz inequality

̄2 =
1

1

X


[(1− )(·· + ·· − 2) + (1− )(·· − )]

=
1− 



X


··(·· − ) +
1− 



X


··(·· − ) +
1

1

X


··(1− )(·· − )

= (( )
−1
+ ( )−1 + ()

−1
)

Then by Lemma A.4(i) and Assumptions A.1(v), 22 = (( )−2 + ( )−2 + ()−2 + ( )−1)
Using 2 in (C.3) with  = 

23 =
1

1

X


̃
0
2(

0
22)

−10
2

=
1

1

X


 [(1− )(·· + ·· − 2) + (1− )(·· − )]

=
1

1

X


 [(1− )(·· + ··) + (1− )··] +(( )−1)

Summarizing the above results yields2 =
1

1

P
  [(1− )(·· + ··) + (1− )··]+ (( )−2+

( )−2 + ()−2 + ( )−1)
(iii) For 31 we have by Lemma A.4(ii) and Assumptions A.1(v) and A.5(iv), 31 = (( )−12)

×(
−1+( )−12) Note that 32 = ̄33. Using 


3 in (C.3) with  =  we have by Assumptions

A.3 and A.6

̄3 =
1− 

1

X


(· − ) =
1− 



X


·(· − ) = (
−1)

Then by Lemma A.4(ii) and Assumptions A.1(v), 32 = (
−2 + ( )−1) Using 3 in (C.3) with

 = ,

33 =
1

1

X


̃
0
3(

0
33)

−10
3

=
1− 

1

X


(· − ) =
1− 

1

X


· +(( )−1)

Summarizing the above results yields 3 =
1−

1

P
 · +(

−2 + ( )−1)
(iv) For 41 we have by Lemma A.4(iii) and Assumptions A.1(v) and A.5(iv), 41 = (( )−12)

×(
−1 + ()−1 + ( )−12) Note that 42 = ̄44. Using 


4 in (C.3) with  =  we have by

Assumptions A.3 and A.6

̄4 =
1

1

X


 [(1− )(· − ) + (1− )(·· − )]

=
1− 



X


·(· − ) +
1

1

X


··(1− )(·· − ) = (
−1 + ()

−1
)
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Then by Lemma A.4(i) and Assumption A.1(v), 42 = (
−2 + ()−2 + ( )−1) Using 4 in

(C.3) with  = ,

43 =
1

1

X


 [(1− )(· − ) + (1− )(·· − )]

=
1

1

X


 [(1− )· + (1− )··] +(( )−1)

Summarizing the above results yields 4 =
1

1

P
  [(1− )· + (1− )··]+(

−2 +()−2+
( )−1)
(v) For 51 we have by Lemma A.4(iv) and Assumptions A.1(v) and A.5(iv), 51 = (( )−12)

×(
−1+( )−12) Note that 52 = ̄55. Using 


5 in (C.3) with  =  we have by Assumptions

A.3 and A.6

̄5 =
1

1

X


(1− )(· − ) =
1

1

X


·(1− )(· − ) = (
−1)

Then by Lemma A.4(iv) and Assumptions A.1(v), 52 = (
−2 + ( )−1) Using 5 in (C.3) with

 = ,

53 =
1

1

X


(1− )(· − ) =
1

1

X


(1− )· +(( )−1)

Summarizing the above results yields 5 =
1

1

P
  [(1− )·] +(

−2 + ( )−1)
(vi) For 61 we have by Lemma A.4(v) and Assumptions A.1(v) and A.5(iv), 61 = (( )−12)

×(
−1 +−1 + ( )−12) Note that 62 = ̄66. Using 


6 in (C.3) with  =  we have

̄6 =
1

1

X


(1− ) [(· − ··) + (· − )]

=
1

1

X


·(1− )(· − ··) + (· − ) +
1

1

X


·(1− )(· − )

= (
−1 +−1)

Then by Lemma A.4(v) and Assumptions A.1(v), 62 = (
−2+−2+( )−1) Using 6 in (C.3)

with  = ,

63 =
1

1

X


̃
0
6(

0
66)

−10
6

=
1

1

X


(1− ) [(· − ··) + (· − )]

=
1

1

X


(1− )(· + ·) +(()−1 + ( )−1)

Summarizing the above results yields6 =
1

1

P
 (1−)(·+·) +(

−2+−2+( )−1)
(vii) For 71 we have by Lemma A.4(vi) and Assumptions A.1(v) and A.5(iv), 71 = (( )−12)

×(
−1 +−1 + −1 + ( )−12) Note that 72 = ̄77. Using 


7 in (C.3) with  =  we have
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by Assumptions A.3 and A.6

̄7 =
1

1

X


 {(1− )(· − ··) + (1− ) [(· − ··) + (· − ··)]}

=
1− 



X


· [(· − )− (·· − )] +
1

1

X


·{(1− ) [(· − )− (·· − )]}

+
1

1

X


· {(1− ) [(· − )− (·· − )]}

= (
−1 +−1 +−1)

Then by Lemma A.4(vi) and Assumptions A.1(v), 72 = (
−2 +−2 + −2 + ( )−1) Using 7

in (C.3) with  = ,

73 =
1

1

X


 {(1− )(· − ··) + (1− )[(· − ··) + (· − ··)]}

=
1

1

X


 [(1− )· + (1− )(· + ·)] +(()
−1
+ ( )

−1
+ ( )−1)

Summarizing the above results, we have7 =
1

1

P
  [(1− )· + (1− )(· + ·)] +(

−2+
−2 + −2 + ( )−1) ¥
Proof of Lemma B.3. (i) This basically follows from the proof of Lemma B.2(ii) and (iv). The main

difference is that some terms in the expansion of 2 are cancelling with the corresponding terms in 4 To

see this, we continue to use the expansion in (C.1). Then 4 −2 =
P3

=1(4 −2) It suffices to show

that 43 − 23 =
1−


P
 ·· + (

−2 + ( )−1) and 4 − 2 = (
−2 + ( )−1) for

 = 1 2 Recall that ̄ = 1
1

P
 ̃

0
(

0
)

−10
 and  = ( 0

)
−1

 0
 for

 = 2  7
For 41 −21 we have

41 −21 = ̂(4 − 2) = ̂[( 04
)
−1

 0 (2
−4

) ( 02
)
−1
] 04



+( 02)
−1

 0 (4 −2) ]

where ̂ = 1
1

P
 ̃

0
 = (( )−12) by Assumption A.5(iv). Noting that

1


 0 (2 −4) (

02)
−1

 04 = 

¡
−1

¢
(

−1 + ()−1 + ( )−12)

and

1


 0 (4 −2) =

1



X


(· − ) (· − ) +(( )−1 + ( )−1)

=
1



X


·· +(( )−1 + ( )−1) = (
−1)

by Lemmas A.12(i) and A.4(iv), we have 4 − 2 = 

¡
−1

¢
and 41 −21 = (( )−12)(

−1)
= (

−2 + ( )−1)
For 42 −22 we make the following decomposition

42 −22 = ̄44 − ̄22 = (̄4 − ̄2)4 + ̄2 (4 − 2) 

Noting that
¡
4(

0
44)

−10
4
¢0
= (· − ) + (·· − ) and

¡
2(

0
22)

−10
2
¢0
= (·· − ) + (·· −

) + (·· − ) we have¡
4(

0
44)

−10
4
¢0 − ¡2(0

22)
−10

2
¢0
= · − ·· − ·· + 
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and by Assumptions A.3 and A.5 and the Cauchy-Schwarz inequality

̄4 − ̄2 =
1− 

1

X


 (· − ·· − ·· + )

=
1− 



X


· (· − )− 1− 



X


·· (·· − )− 1− 



X


·· (·· − )

= (
−1 + ( )−1 + ( )−1) = (

−1)

Then

42 −22 = (̄4 − ̄2)4 + ̄2 (4 − 2)

= 

¡
−1

¢
(

−1 + ()−1 + ( )−12)

+(( )−1 + ( )−1 + ()−1 + ( )−12)

¡
−1

¢
= 

¡
−1

¢


For 43 −23, we use the fact that 4(
0
44)

−10
4 − 2(

0
22)

−10
2 = · − ·· − ·· + 

Assumptions A.1-A.2 and A.5-A.6, and the Cauchy-Schwarz inequality to obtain

43 −23 =
1− 

1

X


(· − ·· − ·· + )

= (1− )

⎧⎨⎩ 1



X


·· − 1



X


···· − 1



X


···· + )

⎫⎬⎭
=

1− 



X


·· +(( )−1 + ( )−1)

In sum, we have shown that 4 −2 =
1−


P
 ·· + (

−1)
(ii) This basically follows from the proof of Lemma B.2(iii) and (iv).
(iii) This basically follows from the proof of Lemma B.2(iii) and (vii).
(iv) This basically follows from the proof of Lemma B.2(iv) and (vii).
(v) This basically follows from the proof of Lemma B.2(v) and (vi).
(vi) This basically follows from the proof of Lemma B.2(v) and (vii).
(vii) This basically follows from the proof of Lemma B.2(vi) and (vii). ¥
Proof of Lemma B.4. (i) Note that ̃1 =  − −1 and by Assumption A.1 (iv)-(v), we have

1 =
1

1
 0 ( 0)−1

P
( − −1) · ( − −1)0 ( 0)−1 0 = (( )−1)

To prove (ii)-(vii), we first apply Lemma A.1 to obtain the following decomposition

 = ( 01 
0
2)

1

1

X


̃̃
0


Ã
1

2

!

=  01

1

1

X


̃̃
0
1 +  02

1

1

X


̃̃
0
2

+201

1

1

X


̃̃
0
2

≡ 1 + 2 + 23 (C.4)

where 1 = (
0

)−1 0
 and 2 = (

0
)

−10
 − (0

)
−10

1 for  = 2  7

Note that 1 = (||1||2) whose exact order can be obtained from Lemma A.4 under Assumption
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A.1(iv)-(v). Let  be defined as in (C.2) whose expressions are given in (C.3) for  = 2  7 Note that

2 =
1

1

X


()
2 +  01

1

1

X



0
1 −

2

1

X



0
1

≡ 2 (1) + 2 (2)− 222 (3) , say, (C.5)

and

3 =  01

1

1

X


̃

 −  01

1

1

X


̃
0
1

≡ 3 (1)− 3 (2) , say. (C.6)

We have several key observations under Assumptions A.1-A.3 and A.5-A.6: (1) 1
1

P
 


2

0
2 =

 (1)  (2)
1

1

P
 ̃

0
 =  (1)  (3) both

1
1

P
 





 and 1

1

P
 ̃




have the same probability order as
°°1

°°  As a result,
 = 2 (1) +(

°°1

°°2)
By (C.3) and Assumptions A.1(iv), A.2, and A.5(iv) we have

22 (1) =
1

1

X


[(1− ) (·· + ·· − 2) + (1− )(·· − )]2

=
(1− )2



X


(2·· + 2··) +
1

1

X


[(1− )··]
2 +(( )−1)

32 (1) =
1

1

X


[(1− )(· − ) + (1− )(·· − )]2

=
(1− )2



X


2· +
1

1

X


[(1− )··]
2 +(( )−1)

42 (1) =
1

1

X


[(1− )(· − ) + (1− )(·· − )]2

=
(1− )2



X


2· +
1

1

X


[(1− )··]
2
+(( )−1)

52 (1) =
1

1

X


[(1− )(· − )]2

=
1

1

X


[(1− )·]
2 +(( )−1)

62 (1) =
1

1

X


[(1− ) [(· − ··) + (· − )]]2

=
1

1

X


{[(1− )·]
2 + [(1− )·]

2}+(
−2 +−2 + ( )−1)

and

72 (1) =
1

1

X


[(1− )(· − ··) + (1− )[(· − ··) + (· − ··)]]
2

=
(1− )

2



X


2· +
1

1

X


[(1− )(· + ·)]
2

+(
−2 +−2 + −2 + ( )−1)
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Summarizing the above results yields the conclusion in Lemma B.4. ¥
Proof of Lemma B.5. The proof follows from that of Lemma B.4 by keeping track some mutually

cancelling terms as in the proof of Lemma B.3. ¥

D Nickell biases for the seven estimators of the slope coefficient

in the panel AR(1) model

In this section, we study the Nickell biases for the seven estimators of the slope coefficients in the panel AR(1)
model. We continue to use the notation defined in the main text and write Model  as follows

 = 0 + −11 + + 

=  + +  (D.1)

where   and  are as defined in Section 2. For the panel AR(1) model,  = (0 1)
0
 and  =

(  −1)  where  is an  × 1 vector of ones, and −1 is an  × 1 vector that stacks −1
for  = 1   . Note that we assume that 0’s are observed here.

Let ̂
()

1 denote the least squares dummy variable (LSDV) estimator ̂
()

1 of 1 in (D.1) based on Model
 Balazsi, Matyas and Wansbeek (2018, BMW hereafter) study the Nickell biases of these estimators when

 =  pass to infinity and  is fixed. In this special case, they show that the asymptote bias of ̂
(2)

1 is


¡
1


¢
 that of ̂

(5)

1 and ̂
(6)

1 is zero, whereas the asymptote biases of ̂
()

1   = 3 4 7 are 
¡
1


¢
and share

the the same dominant term. In our setup, we allow  to be different from  and both diverge to infinity
jointly with  Based on Model  in (D.1), the estimator of 1 is given by

̂
()

1 − 1 = (
0
−1

∗


−1)−1( 0
−1

∗


)  = 1  7

where∗1
≡0 =  −  

0



 ∗

=0−
for  = 2  7 and 

=  (
0
)

−1
.

Note that ∗
is a projection matrix due to the orthogonality between  and   Following the

calculations in BMW (Section 5.1), we can show that the leading term of (̂
()

1 )− 1 is given by

(tr( 0−1∗
))

(tr( 0
−1

∗


−1))
=
1− 21
21

µ
tr(∗

Ψ)− tr(∗
)

tr(∗
Ψ)

¶


where Ψ =  ⊗Ψ0 and

Ψ0 =

⎛⎜⎜⎜⎜⎜⎝
1 1 · · · −11

1 1
. . .

...
...

. . .
. . . 1

−11 · · · 1 1

⎞⎟⎟⎟⎟⎟⎠ 

Please note that due to the differences in the construction of the dummy variables in this paper and in BMW,
our tr(∗

) and tr(∗
Ψ) are different from that of BMW (Table 2).

By Lemma A.2(iii)-(v) and the fact that tr(1 ⊗2) =tr(1)tr(2), we have that

tr() =  − 1 tr() = − 1 tr( ) =  − 1
tr() =  − 1 tr( ) = − 1
tr( ∗ ) =  ( − 1) tr( ∗) = ( − 1) and tr( ∗ ) =( − 1)

With these results, we can show that

tr(Ψ) = ( − 1)  tr(Ψ) = ( − 1)  tr(Ψ) =  −  

tr(Ψ) = ( − 1)  tr(Ψ) = −  

tr( ∗Ψ) =  ( − 1) tr( ∗Ψ) = ( − 1)  and tr( ∗Ψ) =( −  )
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where  =tr(
1

Ψ0) = 1+

21
1−1

³
1− 1



1−1
1−1

´
 The results of tr(∗

) and tr(∗
Ψ) can be summarized

in Table C1.

Table D1: tr(∗
) and tr(∗

Ψ) for model  = 1  7

Model tr(∗
) tr(∗

Ψ)

1  − 1  − 

2  + 2− ( + +  )  −  ( + − 2)− 

3  −  − 

4  − −  + 1  −  −  + 

5  −  −

6  − −  ( − 1)  − −  ( − 1)
7  − ( + + ) + + +  − 1  −  (1 + − −)− − + 

Consequently, we can obtain the Nickell biases for ̂
()

1 as summarized in Table D2 below.

Table D2: Nickell biases for Model 

Model Biases:
1−21
21

tr(∗Ψ)−tr(∗)
tr(∗


Ψ)

1 −(1 + 1)
1


+ ( 1


)

2 −(1 + 1)(
1


+ 1


) + ( 1


+ 1


)

3 −(1 + 1)
1

+ ( 1


)

4 −(1 + 1)
1

+ ( 1


)

5 0

6 0

7 −(1 + 1)
1

+ ( 1


)

Note: Apparently, the bias
−(1+1)


in Model 1 is always of smaller order than the variance term

and thus can be always neglected asymptotically.

When the true model is given by Model 1 but one obtains the LSDV estimator ̂
()

1 of 1 based on Model

 the Nickell bias of ̂
()

1 is identical to that given in Table C2 simply because Model 1 is nested in Models
2− 7
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